CMSSW tools for analyzing TTH events with boosted objects
Follow These Steps:
# setup environment
export SCRAM_ARCH="slc6_amd64_gcc530"
export CMSSW_VERSION="CMSSW_8_0_26_patch2"
# create new CMSSW environment
scram project $CMSSW_VERSION
cd $CMSSW_VERSION/src
export JENKINSCMSSWSRCDIR="$( pwd )"
eval `scramv1 runtime -sh`
git cms-merge-topic riga:deterministicSeeds
# updated MET tools
# this topic is branched from the official cms-met:METRecipe_8020 but fixes the badGlobalMuonTagger
# so that it works like any other MET filter module
git cms-merge-topic riga:badGlobalMuonTagger_fix
git cms-merge-topic cms-met:METRecipe_80X_part2
git clone https://github.com/cms-met/MetTools.git
# update PUJetId values
git remote add ahinzmann https://github.com/ahinzmann/cmssw.git
git fetch ahinzmann PUidMiniAODfix80
git cherry-pick ca33756e1747aec27d13971bcfd0874b16724e7f
# EGMSmearer and data
git cms-merge-topic riga:deterministicEGMSmearer_v2
cd EgammaAnalysis/ElectronTools/data
git clone https://github.com/ECALELFS/ScalesSmearings.git -b Moriond17_gainSwitch_unc
cd $JENKINSCMSSWSRCDIR
git cms-merge-topic michaelwassmer:CMSSW_8_0_26_patch2_changed_SmearedJetProducer -s recursive -X theirs
# ttHFGenFilter
# (only required when you use the ttHF filtered ttJets dataset)
#git cms-merge-topic riga:ttHFGenFilter_tagging
# bjetness code
git clone --depth 1 https://github.com/IHEP-CMS/BJetnessTTHbb.git
cd BJetnessTTHbb/BJetness
mkdir data
cp -r /afs/cern.ch/work/f/fromeo/public/BJetnessTTHbb/JEC/ data/
cp -r /afs/cern.ch/work/f/fromeo/public/BJetnessTTHbb/JER/ data/
cd $JENKINSCMSSWSRCDIR
# install common classifier
mkdir TTH
cd TTH
git clone --depth 1 https://gitlab.cern.ch/ttH/CommonClassifier.git
source CommonClassifier/setup/install_mem.sh
# use recent version of LHAPDF header
sed -i '6i#include "LHAPDF/LHAPDF.h"' MEIntegratorStandalone/interface/Integrand.h
sed -i '32i /*' MEIntegratorStandalone/interface/Integrand.h
sed -i '44i */' MEIntegratorStandalone/interface/Integrand.h
# install reco likelihood variables
source CommonClassifier/setup/install_recoLikelihood.sh
# install miniaod and boostedtth
cd $JENKINSCMSSWSRCDIR
git clone -b 'CMSSW_8_0_24_v1_sync' https://github.com/cms-ttH/MiniAOD.git
git clone --depth 1 -b CMSSW_8_0_26_patch1 https://github.com/cms-ttH/BoostedTTH.git
# Download the JER correction files
cd $JENKINSCMSSWSRCDIR/BoostedTTH/BoostedAnalyzer/data
mkdir jerfiles
cd jerfiles
wget "https://raw.githubusercontent.com/cms-jet/JRDatabase/master/textFiles/Spring16_25nsV10_MC/Spring16_25nsV10_MC_PtResolution_AK4PFchs.txt"
wget "https://raw.githubusercontent.com/cms-jet/JRDatabase/master/textFiles/Spring16_25nsV10_MC/Spring16_25nsV10_MC_SF_AK4PFchs.txt"
cd $JENKINSCMSSWSRCDIR
#compile
scram b -j 12
### only for crab use ###
cp /cvmfs/cms.cern.ch/slc6_amd64_gcc530/external/gsl/2.2.1/lib/* $JENKINSCMSSWSRCDIR/../lib/slc6_amd64_gcc530
scram b -j 12
BoostedObjects contains the classes needed for subjet-analysis. They associate fat jets with the corresponding filtered objects.
BoostedProduces contains the tools used to run the HEPTopTagger and SubjetFilterJet algorithm on MiniAOD and add the output as the above collections.
BoostedAnalyzer can be used to analyze MiniAOD files. The plugin itself takes care of objectselections and stores the objects in InputCollections. Different event selection can be used in this step, too. The inputcollections can be analyzed with a TreeWriter that can load different Processors. Every processor writes a certain class of output variables in a flat TTree.