-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
465 lines (407 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
'''
Code elements borrowed from
https://github.com/clovaai/CutMix-PyTorch/blob/master/train.py
'''
import argparse
import os
import sys
from collections import defaultdict, deque
import time, datetime
import faiss
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange, reduce
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def bool_flag(s):
"""
Parse boolean arguments from the command line.
"""
FALSY_STRINGS = {"off", "false", "0"}
TRUTHY_STRINGS = {"on", "true", "1"}
if s.lower() in FALSY_STRINGS:
return False
elif s.lower() in TRUTHY_STRINGS:
return True
else:
raise argparse.ArgumentTypeError("invalid value for a boolean flag")
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
args.distributed = True
# launched with torch.distributed.launch
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
# launched with submitit on a slurm cluster
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
# launched naively with `python main_dino.py`
# we manually add MASTER_ADDR and MASTER_PORT to env variables
elif torch.cuda.is_available():
print('Will run the code on one GPU.')
args.rank, args.gpu, args.world_size = 0, 0, 1
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
else:
print('Does not support training without GPU.')
sys.exit(1)
dist.init_process_group(
backend="nccl",
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
torch.cuda.set_device(args.gpu)
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
dist.barrier()
setup_for_distributed(args.rank == 0)
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.6f} ({global_avg:.6f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.6f}')
data_time = SmoothedValue(fmt='{avg:.6f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.6f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def multi_scale(samples, model, args):
v = None
for s in [1, 1 / 2 ** (1 / 2), 1 / 2]: # we use 3 different scales
if s == 1:
inp = samples.clone()
else:
inp = torch.nn.functional.interpolate(samples, scale_factor=s, mode='bilinear', align_corners=False)
if args.pt_style == 'vicregl':
feats = model(inp)[-1].clone()
elif args.pt_style == 'clip':
feats = model.module.encode_image(samples).to(torch.float32).clone()
else:
feats = model(inp).clone()
feats = torch.squeeze(feats)
feats = torch.unsqueeze(feats, 0)
if v is None:
v = feats
else:
v += feats
v /= 3
v /= v.norm()
return v
def patchify(x, size):
patches = rearrange(x, 'b c (h1 h2) (w1 w2) -> (b h1 w1) c h2 w2', h2=size, w2=size)
return patches
@torch.no_grad()
def extract_features(args, model, data_loader, use_cuda=True, multiscale=False):
metric_logger = MetricLogger(delimiter=" ")
features = None
# count = 0
for samples, index in metric_logger.log_every(data_loader, 100):
print(f'At the index {index[0]}')
samples = samples.cuda(non_blocking=True)
index = index.cuda(non_blocking=True)
if multiscale:
feats = multi_scale(samples, model, args)
else:
if args.pt_style == 'dino':
if args.layer > 1:
feats = model.module.get_intermediate_layers(samples, args.layer)[0][:, 0, :].clone()
elif args.layer == -1:
allfeats = model.module.get_intermediate_layers(samples, len(model.module.blocks))
feats = [allfeats[i - 1][:, 0, :] for i in args.multilayer]
bdim, _ = feats[0].shape
feats = torch.stack(feats, dim=1).reshape((bdim, -1)).clone()
else:
feats = model(samples).clone()
elif args.pt_style == 'moco':
feats = model.module.forward_features(samples)
feats = feats[:, 0, :].clone()
elif args.pt_style == 'vgg':
feats = model.module.features(samples).clone()
elif args.pt_style in ['clip', 'clip_wikiart']:
#
allfeats = model.module.visual.get_intermediate_layers(samples.type(model.module.dtype))
# else:
# allfeats = model.get_activations(samples) #[::-1]
allfeats.reverse()
if args.arch == 'resnet50':
# import ipdb; ipdb.set_trace()
if args.layer == -1:
raise Exception('Layer=-1 not allowed with clip resnet')
elif args.layer == 1:
feats = allfeats[0].clone()
else:
assert len(allfeats) >= args.layer, "Asking for features of layer that doesnt exist"
feats = reduce(allfeats[args.layer - 1], 'b c h w -> b c', 'mean').clone()
else:
if args.layer == -1:
feats = [allfeats[i - 1][:, 0, :] for i in args.multilayer]
bdim, _ = feats[0].shape
feats = torch.stack(feats, dim=1).reshape((bdim, -1)).clone()
else:
assert len(allfeats) >= args.layer
feats = allfeats[args.layer - 1][:, 0, :].clone()
else:
feats = model(samples).clone()
# init storage feature matrix
feats = nn.functional.normalize(feats, dim=1, p=2).to(torch.float16)
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1], dtype=feats.dtype)
if use_cuda:
features = features.cuda(non_blocking=True)
print(f"Storing features into tensor of shape {features.shape}")
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(
dist.get_world_size(),
feats.size(0),
feats.size(1),
dtype=feats.dtype,
device=feats.device,
)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l).cuda())
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features
def extract_features_pca(args, model, pca_model, k, data_loader, use_cuda=True, multiscale=False):
metric_logger = MetricLogger(delimiter=" ")
features = None
print('In pca function')
for samples, index in metric_logger.log_every(data_loader, 100):
print(f'At the index {index[0]}')
samples = samples.cuda(non_blocking=True)
index = index.cuda(non_blocking=True)
if multiscale:
feats = multi_scale(samples, model, args)
else:
if args.pt_style in ['clip', 'clip_wikiart']:
allfeats = model.module.visual.get_intermediate_layers(samples.type(model.module.dtype))
allfeats.reverse()
if args.arch == 'resnet50':
raise Exception('code not written for this case')
else:
temp = allfeats[args.layer - 1]
temp = torch.nn.functional.normalize(temp, dim=2)
# Doing gram matrix
feats = torch.einsum('bij,bik->bjk', temp, temp)
feats = feats.div(temp.shape[1])
feats = rearrange(feats, 'b c d -> b (c d)')
if pca_model is not None:
feats = feats.cpu().detach().numpy()
feats = pca_model.apply_py(feats)
feats = torch.from_numpy(feats).cuda().clone()
else:
feats = feats.detach().clone()
del temp
del allfeats
elif args.pt_style == 'vgg':
temp = model.module.features(samples)
temp = temp.view(temp.size(0), temp.size(1), -1)
feats = torch.einsum('bji,bki->bjk', temp, temp)
feats = feats.div(temp.shape[1])
feats = rearrange(feats, 'b c d -> b (c d)')
if pca_model is not None:
feats = feats.cpu().detach().numpy()
feats = pca_model.apply_py(feats)
feats = torch.from_numpy(feats).cuda().clone()
else:
feats = feats.detach().clone()
del temp
else:
raise Exception('Code not written for these ptstyles. Come back later.')
feats = nn.functional.normalize(feats, dim=1, p=2).to(torch.float16)
# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1], dtype=feats.dtype)
if use_cuda:
features = features.cuda(non_blocking=True)
print(f"Storing features into tensor of shape {features.shape}")
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(
dist.get_world_size(),
feats.size(0),
feats.size(1),
dtype=feats.dtype,
device=feats.device,
)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
if pca_model is None:
features = features.detach().numpy()
pca = faiss.PCAMatrix(features.shape[-1], k)
pca.train(features)
trans_features = pca.apply_py(features)
return torch.from_numpy(trans_features), pca
else:
return features, None
# saving features into numpy files
def save_embeddings_numpy(embeddings, filenames, savepath):
os.makedirs(savepath, exist_ok=True)
for c, fname in enumerate(filenames):
np_emb = np.asarray(embeddings[c, :].cpu().detach(), dtype=np.float16)
np.save(f'{savepath}/{fname}.npy', np_emb)