forked from turicas/covid19-br
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfull.py
134 lines (112 loc) · 4.86 KB
/
full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from collections import Counter, defaultdict
from functools import lru_cache
from pathlib import Path
import rows
from rows.utils import load_schema
DATA_PATH = Path(__file__).parent / "data"
SCHEMA_PATH = Path(__file__).parent / "schema"
def read_cases(input_filename, order_by=None):
cases = rows.import_from_csv(
input_filename, force_types=load_schema(str(SCHEMA_PATH / "caso.csv"))
)
if order_by:
cases.order_by(order_by)
return cases
def read_population():
return rows.import_from_csv(
DATA_PATH / "populacao-estimada-2019.csv",
force_types=load_schema(str(SCHEMA_PATH / "populacao-estimada-2019.csv")),
)
@lru_cache()
def read_epidemiological_week():
filename = "data/epidemiological-week.csv"
table = rows.import_from_csv(filename)
return {row.date: row.epidemiological_week for row in table}
@lru_cache(maxsize=6000)
def epidemiological_week(date):
return read_epidemiological_week()[date]
def get_data(input_filename):
casos = read_cases(input_filename, order_by="date")
dates = sorted(set(c.date for c in casos))
row_key = lambda row: (row.place_type, row.state, row.city or None)
caso_by_key = defaultdict(list)
for caso in casos:
caso_by_key[row_key(caso)].append(caso)
for place_cases in caso_by_key.values():
place_cases.sort(key=lambda row: row.date, reverse=True)
brasil = read_population()
city_by_key = {(city.state, city.city): city for city in brasil}
population_by_state, place_keys = Counter(), []
for city in brasil:
population_by_state[city.state] += city.estimated_population
place_keys.append(("city", city.state, city.city))
place_code_by_state = {city.state: city.state_ibge_code for city in brasil}
for state, place_code in place_code_by_state.items():
place_keys.append(("state", state, None))
place_keys.append(("city", state, "Importados/Indefinidos"))
place_keys.sort()
order_key = lambda row: row.order_for_place
last_case_for_place = {}
order_for_place = Counter()
for date in dates:
for place_key in place_keys:
place_type, state, city = place_key
place_cases = caso_by_key[place_key]
valid_place_cases = sorted(
[item for item in place_cases if item.date <= date],
key=order_key,
reverse=True,
)
if not valid_place_cases:
# There are no cases for this city for this date - skip
continue
# This place has at least one case for this date (or before),
# so use the newest one.
last_valid_case = valid_place_cases[0]
newest_case = place_cases[0]
is_last = date == last_valid_case.date == newest_case.date
order_for_place[place_key] += 1
new_case = {
"city": city,
"city_ibge_code": last_valid_case.city_ibge_code,
"date": date,
"epidemiological_week": epidemiological_week(date),
"estimated_population_2019": last_valid_case.estimated_population_2019,
"is_last": is_last,
"is_repeated": last_valid_case.date != date,
"last_available_confirmed": last_valid_case.confirmed,
"last_available_confirmed_per_100k_inhabitants": last_valid_case.confirmed_per_100k_inhabitants,
"last_available_date": last_valid_case.date,
"last_available_death_rate": last_valid_case.death_rate,
"last_available_deaths": last_valid_case.deaths,
"order_for_place": order_for_place[place_key],
"place_type": place_type,
"state": state,
}
last_case = last_case_for_place.get(place_key, None)
if last_case is None:
new_confirmed = new_case["last_available_confirmed"]
new_deaths = new_case["last_available_deaths"]
else:
new_confirmed = (
new_case["last_available_confirmed"]
- last_case["last_available_confirmed"]
)
new_deaths = (
new_case["last_available_deaths"]
- last_case["last_available_deaths"]
)
new_case["new_confirmed"] = new_confirmed
new_case["new_deaths"] = new_deaths
last_case_for_place[place_key] = new_case
yield new_case
if __name__ == "__main__":
import argparse
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("input_filename")
parser.add_argument("output_filename")
args = parser.parse_args()
writer = rows.utils.CsvLazyDictWriter(args.output_filename)
for row in tqdm(get_data(args.input_filename)):
writer.writerow(row)