forked from mri4all/gradient_design
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradientCalculationV2_1.py
349 lines (228 loc) · 12.3 KB
/
gradientCalculationV2_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 4 17:02:30 2019
@author: to_reilly
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy import special
from scipy import spatial
def calcP(mm, aa, bb, kk):
mu0 = 4 * np.pi * 10**(-7)
dBesselk_m = special.kvp(mm, abs(kk)*aa,1)
dBesseli_m = special.ivp(mm, abs(kk)*bb,1)
return aa * mu0 * kk * dBesseli_m * dBesselk_m
def calcQ(mm, aa, bb, kk):
mu0 = 4 * np.pi * 10**(-7)
dBesselk_m = special.kvp(mm,abs(kk)*aa,1)
Besseli_m = special.iv(mm, abs(kk) * bb)
return mm * aa * mu0 / bb * abs(kk) / kk * Besseli_m * dBesselk_m
def calculateContour(streamF, numWires, phi, z):
phi2D, z2D= np.meshgrid(phi,z)
levels = np.linspace(np.min(streamF), np.max(streamF), numWires*2 + 4)
levels = levels[1:-1]
# Wire should be laid along contours between the isolines, calculate midpoint between isolines
midPointLevels = [(levels[i]+levels[i+1])/2 for i in range(np.size(levels)-1)]
midPointLevels = np.array(midPointLevels)[np.abs(midPointLevels) >= 1e-6] #remove zeros, account for floating point error
plt.ioff()
plt.figure()
contWires = plt.contour(phi2D,z2D,streamF,levels = midPointLevels)
return contWires
def halbachXgradient(linearLength = 140, coilRad = 135, coilLength = 350,numWires = 10, numHighOrders = 10, \
linearityTerm = 16, apoTerm = .05, resolution = 1e-3):
gradStrength = 1e-3
a = coilRad*1e-3 #gradRad
b = 0.001*a
d = linearLength*1e-3 #Linear region
nShape = linearityTerm
res = resolution
Zmax = coilLength*1e-3
N = numHighOrders
h = apoTerm
Nsamp = np.int(2*Zmax/res)
z = np.linspace(-Zmax,Zmax,Nsamp)
phi = np.linspace(-1.5*np.pi,0.5*np.pi,Nsamp)
kfov = 1/res
k = np.linspace(0.00001,kfov,Nsamp).conj().T
gradShape = np.divide(z,1+(z/d)**nShape)
gradShape_k = np.fft.fft(gradShape.conj().T);
t_k = np.exp(-2*(h*k)**2) #apodisation term
n_0 = 2*np.pi*gradShape_k*gradStrength/(calcQ(1,a,b,k)+calcP(1,a,b,k))
streamF = 0
for n in range(N+1):
sign = (-1)**(n+1)
scale = 1
for m in range(n+1):
scale *= np.divide((calcP(2*m-1,a,b,k)-calcQ(2*m-1,a,b,k)),(calcP(2*m+1,a,b,k)+calcQ(2*m+1,a,b,k)))
B_apo = sign*np.fft.ifft(np.divide(np.multiply(n_0,t_k*scale),k))
streamF += np.outer(B_apo,np.cos((2*n+1)*phi))
streamF = np.real(streamF)
return calculateContour(streamF, numWires, phi, z)
def halbachYgradient(linearLength = 140, coilRad = 135, coilLength = 350, numWires = 10, numHighOrders = 10, \
linearityTerm = 16, apoTerm = .05, resolution = 1e-3):
gradStrength = 1e-3
a = coilRad*1e-3 #gradRad
b = 0.001*a
d = linearLength*1e-3 #Linear region
Zmax = 2*coilLength*1e-3
N = 0
print("Number of higher order modes set to 0, not needed for Y and Z")
h = apoTerm
Nsamp = np.int(2*Zmax/resolution)
z = np.linspace(-Zmax,Zmax,Nsamp)
phi = np.linspace(-np.pi,np.pi,Nsamp)
k = np.linspace(0.00001,1/resolution,Nsamp).conj().T
gradShape = 1/(1+(z/d)**linearityTerm) - 1/(1+((z+3.5*d)/(0.5*d))**linearityTerm)-1/(1+((z-3.5*d)/(0.5*d))**linearityTerm)
gradShape_k = np.fft.fft(gradShape.conj().T);
t_k = np.exp(-2*(h*k)**2) #apodisation term
n_0 = b*2*np.pi*gradShape_k*gradStrength/(calcQ(2,a,b,k)+calcP(2,a,b,k))
streamF = 0
for n in range(N+1):
amp = (-1)**(n+1)
scale = 1
for m in range(1,n+1):
scale *= np.divide((calcP(2*m,a,b,k)-calcQ(2*m,a,b,k)),(calcP(2*m+2,a,b,k)+calcQ(2*m+2,a,b,k)))
B_apo = np.fft.ifft((2/np.pi)*amp*(np.divide(1,k))*n_0*scale*t_k)
streamF += np.outer(B_apo,np.sin((2*n+2)*phi))
#remove sidelobes
d_samp=d/resolution
streamF = streamF[int(Nsamp/2-1.5*d_samp):int(Nsamp/2+1.5*d_samp)]
z = z[int(Nsamp/2-1.5*d_samp):int(Nsamp/2+1.5*d_samp)]
phi2D, z2D= np.meshgrid(phi,z)
return calculateContour(streamF.real, numWires, phi, z)
def halbachZgradient(linearLength = 140, coilRad = 135, coilLength = 350, numWires = 10, numHighOrders = 10, \
linearityTerm = 16, apoTerm = .05, resolution = 1e-3):
gradStrength = 1e-3
a = coilRad*1e-3 #gradRad
b = 0.001*a
d = linearLength*1e-3 #Linear region
Zmax = 2*coilLength*1e-3
N = 0
#print("Number of higher order modes set to 0, not needed for Y and Z")
h = apoTerm
Nsamp = np.int(2*Zmax/resolution)
z = np.linspace(-Zmax,Zmax,Nsamp)
phi = np.linspace(-np.pi,np.pi,Nsamp)+np.pi/4
k = np.linspace(0.00001,1/resolution,Nsamp).conj().T
gradShape = 1/(1+(z/d)**linearityTerm) - 1/(1+((z+3.5*d)/(0.5*d))**linearityTerm)-1/(1+((z-3.5*d)/(0.5*d))**linearityTerm)
gradShape_k = np.fft.fft(gradShape.conj().T);
t_k = np.exp(-2*(h*k)**2) #apodisation term
n_0 = b*2*np.pi*gradShape_k*gradStrength/(calcQ(2,a,b,k)+calcP(2,a,b,k))
streamF = 0
for n in range(N+1):
amp = (-1)**(n+1)
scale = 1
for m in range(1,n+1):
scale *= np.divide((calcP(2*m,a,b,k)-calcQ(2*m,a,b,k)),(calcP(2*m+2,a,b,k)+calcQ(2*m+2,a,b,k)))
B_apo = np.fft.ifft((2/np.pi)*amp*(np.divide(1,k))*n_0*scale*t_k)
streamF += np.outer(B_apo,np.cos((2*n+2)*phi))
#remove sideloabs
d_samp=d/resolution
streamF = streamF[int(Nsamp/2-1.5*d_samp):int(Nsamp/2+1.5*d_samp)]
streamF[0] = 0
streamF[-1] = 0
z = z[int(Nsamp/2-1.5*d_samp):int(Nsamp/2+1.5*d_samp)]
phi2D, z2D= np.meshgrid(phi,z)
np.save("streamF_z.npy", streamF)
np.save("phi2D.npy", streamF)
np.save("z2D.npy", z2D)
return calculateContour(streamF.real, numWires, phi, z)
def calculateBfield(contours, DSV, resolution, coilRad, direction):
import numexpr as ne
radius = np.float32(DSV/2)
phi = np.linspace(0, 2*np.pi, int(2*np.pi*radius/resolution), dtype = np.float32)
theta = np.linspace(0, np.pi, int(np.pi*radius/resolution), dtype = np.float32)
phiGrid, thetaGrid = np.meshgrid(phi,theta)
xSphere = radius*np.multiply(np.sin(thetaGrid), np.cos(phiGrid))
ySphere = radius*np.multiply(np.sin(thetaGrid), np.sin(phiGrid))
zSphere = radius*np.cos(thetaGrid)
points = np.stack((np.ravel(xSphere),np.ravel(ySphere),np.ravel(zSphere)),axis=1)
wireLevels = contours.allsegs
gradCurrent = np.float32(contours.levels[1] - contours.levels[0])
bField = np.zeros(np.shape(points)[0], dtype = np.float32)
import time
startTime = time.time()
wireCounter = 1
for wireLevel in wireLevels:
for wire in wireLevel:
print("Simulating wire %.0f of %0.f"%(wireCounter, np.size(wireLevels)))
wire = np.array(wire, dtype = np.float32)
wirePath3D = np.stack((np.cos(wire[:,0])*np.float32(coilRad),np.sin(wire[:,0])*np.float32(coilRad),wire[:,1]),axis=1)
idS = 1e-7*gradCurrent*(wirePath3D[1:,:] - wirePath3D[:-1,:])
r = points[:,np.newaxis] - wirePath3D[:-1,:]
r3 = np.sum(np.square(r), axis = 2)[:,:,np.newaxis]
rNorm = r/(r3*np.sqrt(r3))
bField += np.matmul(rNorm[:,:,2], idS[:,1]) - np.matmul(rNorm[:,:,1],idS[:,2])
wireCounter += 1
print("Execution time: %.2f seconds"%(time.time()-startTime))
error = calculateError(points, bField, direction)
return [xSphere*1e3, ySphere*1e3, zSphere*1e3], np.reshape(bField, (np.size(theta), np.size(phi))), error
def calculateError(coords, bField, direction):
if(direction == 0):
coordAxis = coords[:,2]
elif(direction == 1):
coordAxis = coords[:,1]
else:
coordAxis = coords[:,0]
argMin = np.argmin(coordAxis)
argMax = np.argmax(coordAxis)
posRange = np.max(coordAxis) - np.min(coordAxis)
bRange = bField[argMax] - bField[argMin]
efficiency = bRange/posRange
coordAxis[np.abs(coordAxis) < 0.01*posRange] = 'NaN'
return np.nanmax((bField - efficiency*coordAxis)/(efficiency*coordAxis))
def exportWires(contours, coilRad, direction, conjoined):
wireNum = 0
contourDict = {}
wireLevels = contours.allsegs
if ((direction == 0) and conjoined): #for the X gradient the center of the smallest contour is needed for joining the wires
minLength = np.inf
for wireLevel in wireLevels:
for wire in wireLevel:
if(np.size(wire,0) < minLength):
centerHeight = np.abs(np.mean(wire[:,1])*1e3)
for wireLevel in wireLevels:
for wire in wireLevel:
wirePath3D = np.stack((np.cos(wire[:,0])*coilRad,np.sin(wire[:,0])*coilRad,wire[:,1]*1e3),axis=1)
if(conjoined):
gapSize = 8 #gap in which the sections are joined
gapAngle = gapSize/coilRad
centerAngle = np.mean(wire[:,0])
if(direction == 0):
mask = (np.abs(wire[:,0] - centerAngle) > gapAngle) | (np.abs(wirePath3D[:,2]) < centerHeight)
else:
mask = (np.abs(wire[:,0] - centerAngle) > gapAngle) | (wirePath3D[:,2] < 0)
while mask[0]:
mask = np.roll(mask,1)
wirePath3D = np.roll(wirePath3D, 1, axis = 0)
contourDict[str(wireNum)] = np.stack((wirePath3D[mask, 0],wirePath3D[mask, 1],wirePath3D[mask, 2]),axis=1)
else:
contourDict[str(wireNum)] = wirePath3D
wireNum += 1
if(not conjoined):
return contourDict
else:
#############################################
# Join the wires with a gap in to one array #
#############################################
numCoilSegments = 4 #Number of quadrants
joinedContour = {}
joinedContour[str(0)] = contourDict[str(0)]
joinedContour[str(1)] = contourDict[str(1)]
joinedContour[str(2)] = contourDict[str(int(2*wireNum/numCoilSegments))]
joinedContour[str(3)] = contourDict[str(int(2*wireNum/numCoilSegments)+1)]
for idx in range(1,int(wireNum/numCoilSegments)):
joinedContour[str(0)] = np.append(joinedContour[str(0)], contourDict[str(2*idx)], axis = 0)
joinedContour[str(1)] = np.append(joinedContour[str(1)], contourDict[str(2*idx+1)], axis = 0)
joinedContour[str(2)] = np.append(joinedContour[str(2)], contourDict[str(int(2*wireNum/numCoilSegments) + idx*2 )], axis = 0)
joinedContour[str(3)] = np.append(joinedContour[str(3)], contourDict[str(int(2*wireNum/numCoilSegments) + idx*2 +1)], axis = 0)
############################################
# Check for consecutive identical elements #
############################################
tol = 1e-5
for key in joinedContour:
delta = joinedContour[key][1:,:] - joinedContour[key][:-1,:]
delta = np.sum(np.square(delta), axis = 1)
zeroElements = delta < tol
joinedContour[key] = np.delete(joinedContour[key],np.nonzero(zeroElements), axis = 0)
return joinedContour