Skip to content
/ Magrad Public

You love tinygrad? You love Julia? You will be obsessed with magrad! ๐Ÿ˜ˆ

License

Notifications You must be signed in to change notification settings

leonvol/Magrad

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

12 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Build Status Coverage

This is magrad, a tensor autograd/machine learning framework written completely in Julia.

Although the magrad project follows the typical Julia package structure, it is not named Magrad.jl as it should not be confused as an officially registered package.

status of the project

This project is a work in progress. Currently magrad provides the following functionalities:

  • Tensor type
  • full backprop support for basic and broadcast/per-element ops

These are some goals for the future:

  • implement gradient tape to keep track of computation
  • implement optimizer (?)

workings of magrad & documentation

Magrad is a very simple and small project. The general workings can be described in a couple of sentences. The core part of the project is the Tensor class (or struct in Julia). The Tensor holds all the information, gradients and currently also keeps track of the computation of itself, although I will split functionality and create a gradient tape for that purpose in the future. The actual computation of the gradients handled by the backward() function which traverses the computation graph saved in the Tensors in reverse order and applies the chain rule repeatedly. And that's all there is to it.

Every critical piece of code has a comment attached, describing its function and design decisions. This is the general structure of the project:

file name function
Magrad.jl magrad library, includes tensor.jl
tensor.jl implementation of the Tensor type, includes all of the following files to expose all the needed functionality to the user
ops.jl implementation of the currently supported operations like +, -, matmul (*) of the Tensor type
grad.jl methods to calculate gradients for each supported op
broadcast.jl methods to support broadcasting for the Tensor type

installation

using Pkg
Pkg.add(url="https://github.com/leonvol/magrad")

usage

magrad is easy to use and can prepare you for working with bigger frameworks like PyTorch. Here a small showcase of the basic functionality (but more complicated computations are fully supported, too):

using Magrad: Tensor, backward!

a = Tensor(ones(5, 5))
b = Tensor(ones(1, 5))

res = (3 .* b) * (3 .* (a + a)) .* 4

backward!(res)
# a.grad = 5x5 matrix of 72s
# b.grad = [360, 360, 360, 360, 360]

testing

There are tests for every critical part of the code, tested with specific examples against PyTorch.

To run tests locally, make sure to have activated the magrad environment and run the following:

include("test/runtests.jl")

About

You love tinygrad? You love Julia? You will be obsessed with magrad! ๐Ÿ˜ˆ

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages