-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
560 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
GROBID_URL=https://lfoppiano-grobid.hf.space | ||
PROMPTLAYER_API_KEY=pl_89d0213d12cde8162f75c4da00e74094 | ||
|
||
HTTP_PROXY= | ||
http_proxy= | ||
HTTPS_PROXY= | ||
https_proxy= | ||
NO_PROXY= | ||
no_proxy= | ||
REQUEST_CA_BUNDLE= | ||
REQUESTS_CA_BUNDLE= | ||
CURL_CA_BUNDLE= |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
name: Build unstable | ||
|
||
on: [push] | ||
|
||
concurrency: | ||
group: unstable | ||
# cancel-in-progress: true | ||
|
||
|
||
jobs: | ||
build: | ||
runs-on: ubuntu-latest | ||
|
||
steps: | ||
- uses: actions/checkout@v2 | ||
- name: Set up Python 3.9 | ||
uses: actions/setup-python@v2 | ||
with: | ||
python-version: "3.9" | ||
- name: Install dependencies | ||
run: | | ||
python -m pip install --upgrade pip | ||
pip install --upgrade flake8 pytest pycodestyle | ||
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi | ||
- name: Lint with flake8 | ||
run: | | ||
# stop the build if there are Python syntax errors or undefined names | ||
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics | ||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide | ||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics | ||
# - name: Test with pytest | ||
# run: | | ||
# pytest | ||
|
||
docker-build-documentqa: | ||
needs: [build] | ||
|
||
runs-on: self-hosted | ||
|
||
steps: | ||
- uses: actions/checkout@v2 | ||
- name: Build the Docker image | ||
run: docker build . --file Dockerfile.qa --tag lfoppiano/documentqa:develop-latest | ||
- name: Cleanup older than 24h images and containers | ||
run: docker system prune --filter "until=24h" --force |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
.idea | ||
.env | ||
.env.docker | ||
**/**/.chroma | ||
grobid_magneto/reverse_qa/.chroma | ||
exploration_llm | ||
resources/db |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
[logger] | ||
level = "info" | ||
|
||
[browser] | ||
gatherUsageStats = false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
FROM python:3.9-slim | ||
|
||
WORKDIR /app | ||
|
||
RUN apt-get update && apt-get install -y \ | ||
build-essential \ | ||
curl \ | ||
software-properties-common \ | ||
git \ | ||
&& rm -rf /var/lib/apt/lists/* | ||
|
||
COPY requirements.txt . | ||
|
||
RUN pip3 install -r requirements.txt --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org | ||
|
||
COPY grobid_magneto/ grobid_magneto | ||
COPY commons/ commons | ||
COPY resources/nims_proxy.cer . | ||
COPY tiktoken_cache ./tiktoken_cache | ||
COPY grobid_magneto/document_qa/.streamlit ./.streamlit | ||
|
||
# extract version | ||
COPY .git ./.git | ||
RUN git rev-parse --short HEAD > revision.txt | ||
RUN rm -rf ./.git | ||
|
||
EXPOSE 8501 | ||
|
||
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health | ||
|
||
ENV PYTHONPATH "${PYTHONPATH}:." | ||
|
||
ENTRYPOINT ["streamlit", "run", "document_qa/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,3 @@ | ||
# document-qa | ||
# DocumentIQA: Document Insight Question/Answer | ||
|
||
Small demo for performing data extraction at document level using small context. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
import copy | ||
import os | ||
from pathlib import Path | ||
from typing import Union, Any | ||
|
||
from grobid_client.grobid_client import GrobidClient | ||
from langchain.chains import create_extraction_chain | ||
from langchain.chains.question_answering import load_qa_chain | ||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate | ||
from langchain.retrievers import MultiQueryRetriever | ||
from langchain.text_splitter import RecursiveCharacterTextSplitter | ||
from langchain.vectorstores import Chroma | ||
from tqdm import tqdm | ||
|
||
from commons.annotations_utils import GrobidProcessor | ||
|
||
|
||
class DocumentQAEngine: | ||
llm = None | ||
qa_chain_type = None | ||
embedding_function = None | ||
embeddings_dict = {} | ||
embeddings_map_from_md5 = {} | ||
embeddings_map_to_md5 = {} | ||
|
||
def __init__(self, llm, embedding_function, qa_chain_type="stuff", embeddings_root_path=None, grobid_url=None): | ||
self.embedding_function = embedding_function | ||
self.llm = llm | ||
self.chain = load_qa_chain(llm, chain_type=qa_chain_type) | ||
|
||
if embeddings_root_path is not None: | ||
self.embeddings_root_path = embeddings_root_path | ||
if not os.path.exists(embeddings_root_path): | ||
os.makedirs(embeddings_root_path) | ||
else: | ||
self.load_embeddings(self.embeddings_root_path) | ||
|
||
if grobid_url: | ||
self.grobid_url = grobid_url | ||
grobid_client = GrobidClient( | ||
grobid_server=self.grobid_url, | ||
batch_size=1000, | ||
coordinates=["p"], | ||
sleep_time=5, | ||
timeout=60, | ||
check_server=True | ||
) | ||
self.grobid_processor = GrobidProcessor(grobid_client) | ||
|
||
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None: | ||
""" | ||
Load the embeddings assuming they are all persisted and stored in a single directory. | ||
The root path of the embeddings containing one data store for each document in each subdirectory | ||
""" | ||
|
||
embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()] | ||
|
||
if len(embeddings_directories) == 0: | ||
print("No available embeddings") | ||
return | ||
|
||
for embedding_document_dir in embeddings_directories: | ||
self.embeddings_dict[embedding_document_dir.name] = Chroma(persist_directory=embedding_document_dir.path, | ||
embedding_function=self.embedding_function) | ||
|
||
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename')) | ||
if filename_list: | ||
filenam = filename_list[0].name.replace(".storage_filename", "") | ||
self.embeddings_map_from_md5[embedding_document_dir.name] = filenam | ||
self.embeddings_map_to_md5[filenam] = embedding_document_dir.name | ||
|
||
print("Embedding loaded: ", len(self.embeddings_dict.keys())) | ||
|
||
def get_loaded_embeddings_ids(self): | ||
return list(self.embeddings_dict.keys()) | ||
|
||
def get_md5_from_filename(self, filename): | ||
return self.embeddings_map_to_md5[filename] | ||
|
||
def get_filename_from_md5(self, md5): | ||
return self.embeddings_map_from_md5[md5] | ||
|
||
def query_document(self, query: str, doc_id, output_parser=None, context_size=4, extraction_schema=None, | ||
verbose=False) -> ( | ||
Any, str): | ||
# self.load_embeddings(self.embeddings_root_path) | ||
|
||
if verbose: | ||
print(query) | ||
|
||
response = self._run_query(doc_id, query, context_size=context_size) | ||
response = response['output_text'] if 'output_text' in response else response | ||
|
||
if verbose: | ||
print(doc_id, "->", response) | ||
|
||
if output_parser: | ||
try: | ||
return self._parse_json(response, output_parser), response | ||
except Exception as oe: | ||
print("Failing to parse the response", oe) | ||
return None, response | ||
elif extraction_schema: | ||
try: | ||
chain = create_extraction_chain(extraction_schema, self.llm) | ||
parsed = chain.run(response) | ||
return parsed, response | ||
except Exception as oe: | ||
print("Failing to parse the response", oe) | ||
return None, response | ||
else: | ||
return None, response | ||
|
||
def query_storage(self, query: str, doc_id, context_size=4): | ||
documents = self._get_context(doc_id, query, context_size) | ||
|
||
context_as_text = [doc.page_content for doc in documents] | ||
return context_as_text | ||
|
||
def _parse_json(self, response, output_parser): | ||
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \ | ||
"that can process text and transform it to JSON." | ||
human_message = """Transform the text between three double quotes in JSON.\n\n\n\n | ||
{format_instructions}\n\nText: \"\"\"{text}\"\"\"""" | ||
|
||
system_message_prompt = SystemMessagePromptTemplate.from_template(system_message) | ||
human_message_prompt = HumanMessagePromptTemplate.from_template(human_message) | ||
|
||
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt]) | ||
|
||
results = self.llm( | ||
prompt_template.format_prompt( | ||
text=response, | ||
format_instructions=output_parser.get_format_instructions() | ||
).to_messages() | ||
) | ||
parsed_output = output_parser.parse(results.content) | ||
|
||
return parsed_output | ||
|
||
def _run_query(self, doc_id, query, context_size=4): | ||
relevant_documents = self._get_context(doc_id, query, context_size) | ||
return self.chain.run(input_documents=relevant_documents, question=query) | ||
# return self.chain({"input_documents": relevant_documents, "question": prompt_chat_template}, return_only_outputs=True) | ||
|
||
def _get_context(self, doc_id, query, context_size=4): | ||
db = self.embeddings_dict[doc_id] | ||
retriever = db.as_retriever(search_kwargs={"k": context_size}) | ||
relevant_documents = retriever.get_relevant_documents(query) | ||
return relevant_documents | ||
|
||
def get_all_context_by_document(self, doc_id): | ||
db = self.embeddings_dict[doc_id] | ||
docs = db.get() | ||
return docs['documents'] | ||
|
||
def _get_context_multiquery(self, doc_id, query, context_size=4): | ||
db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size}) | ||
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm) | ||
relevant_documents = multi_query_retriever.get_relevant_documents(query) | ||
return relevant_documents | ||
|
||
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False): | ||
if verbose: | ||
print("File", pdf_file_path) | ||
filename = Path(pdf_file_path).stem | ||
structure = self.grobid_processor.process_structure(pdf_file_path) | ||
|
||
biblio = structure['biblio'] | ||
biblio['filename'] = filename.replace(" ", "_") | ||
|
||
if verbose: | ||
print("Generating embeddings for:", hash, ", filename: ", filename) | ||
|
||
texts = [] | ||
metadatas = [] | ||
ids = [] | ||
if chunk_size < 0: | ||
for passage in structure['passages']: | ||
biblio_copy = copy.copy(biblio) | ||
if len(str.strip(passage['text'])) > 0: | ||
texts.append(passage['text']) | ||
|
||
biblio_copy['type'] = passage['type'] | ||
biblio_copy['section'] = passage['section'] | ||
biblio_copy['subSection'] = passage['subSection'] | ||
metadatas.append(biblio_copy) | ||
|
||
ids.append(passage['passage_id']) | ||
else: | ||
document_text = " ".join([passage['text'] for passage in structure['passages']]) | ||
# text_splitter = CharacterTextSplitter.from_tiktoken_encoder( | ||
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | ||
chunk_size=chunk_size, | ||
chunk_overlap=chunk_size * perc_overlap | ||
) | ||
texts = text_splitter.split_text(document_text) | ||
metadatas = [biblio for _ in range(len(texts))] | ||
ids = [id for id, t in enumerate(texts)] | ||
|
||
return texts, metadatas, ids | ||
|
||
def create_memory_embeddings(self, pdf_path, doc_id=None): | ||
texts, metadata, ids = self.get_text_from_document(pdf_path, chunk_size=500, perc_overlap=0.1) | ||
if doc_id: | ||
hash = doc_id | ||
else: | ||
hash = metadata[0]['hash'] | ||
|
||
self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata) | ||
self.embeddings_root_path = None | ||
|
||
return hash | ||
|
||
def create_embeddings(self, pdfs_dir_path: Path): | ||
input_files = [] | ||
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False): | ||
for file_ in files: | ||
if not (file_.lower().endswith(".pdf")): | ||
continue | ||
input_files.append(os.path.join(root, file_)) | ||
|
||
for input_file in tqdm(input_files, total=len(input_files), unit='document', | ||
desc="Grobid + embeddings processing"): | ||
|
||
md5 = self.calculate_md5(input_file) | ||
data_path = os.path.join(self.embeddings_root_path, md5) | ||
|
||
if os.path.exists(data_path): | ||
print(data_path, "exists. Skipping it ") | ||
continue | ||
|
||
texts, metadata, ids = self.get_text_from_document(input_file, chunk_size=500, perc_overlap=0.1) | ||
filename = metadata[0]['filename'] | ||
|
||
vector_db_document = Chroma.from_texts(texts, | ||
metadatas=metadata, | ||
embedding=self.embedding_function, | ||
persist_directory=data_path) | ||
vector_db_document.persist() | ||
|
||
with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo: | ||
fo.write("") | ||
|
||
@staticmethod | ||
def calculate_md5(input_file: Union[Path, str]): | ||
import hashlib | ||
md5_hash = hashlib.md5() | ||
with open(input_file, 'rb') as fi: | ||
md5_hash.update(fi.read()) | ||
return md5_hash.hexdigest().upper() |
Oops, something went wrong.