-
Notifications
You must be signed in to change notification settings - Fork 3
/
colab_utils.py
479 lines (408 loc) · 19 KB
/
colab_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils for colab tutorials located in object_detection/colab_tutorials/..."""
import base64
import io
import json
from typing import Dict
from typing import List
from typing import Union
import uuid
from IPython.display import display
from IPython.display import Javascript
import numpy as np
from PIL import Image
from google.colab import output
from google.colab.output import eval_js
def image_from_numpy(image):
"""Open an image at the specified path and encode it in Base64.
Args:
image: np.ndarray
Image represented as a numpy array
Returns:
An encoded Base64 representation of the image
"""
with io.BytesIO() as img_output:
Image.fromarray(image).save(img_output, format='JPEG')
data = img_output.getvalue()
data = str(base64.b64encode(data))[2:-1]
return data
def draw_bbox(image_urls, callbackId): # pylint: disable=invalid-name
"""Open the bounding box UI and send the results to a callback function.
Args:
image_urls: list[str | np.ndarray]
List of locations from where to load the images from. If a np.ndarray is
given, the array is interpretted as an image and sent to the frontend.
If a str is given, the string is interpreted as a path and is read as a
np.ndarray before being sent to the frontend.
callbackId: str
The ID for the callback function to send the bounding box results to
when the user hits submit.
"""
js = Javascript('''
async function load_image(imgs, callbackId) {
//init organizational elements
const div = document.createElement('div');
var image_cont = document.createElement('div');
var errorlog = document.createElement('div');
var crosshair_h = document.createElement('div');
crosshair_h.style.position = "absolute";
crosshair_h.style.backgroundColor = "transparent";
crosshair_h.style.width = "100%";
crosshair_h.style.height = "0px";
crosshair_h.style.zIndex = 9998;
crosshair_h.style.borderStyle = "dotted";
crosshair_h.style.borderWidth = "2px";
crosshair_h.style.borderColor = "rgba(255, 0, 0, 0.75)";
crosshair_h.style.cursor = "crosshair";
var crosshair_v = document.createElement('div');
crosshair_v.style.position = "absolute";
crosshair_v.style.backgroundColor = "transparent";
crosshair_v.style.width = "0px";
crosshair_v.style.height = "100%";
crosshair_v.style.zIndex = 9999;
crosshair_v.style.top = "0px";
crosshair_v.style.borderStyle = "dotted";
crosshair_v.style.borderWidth = "2px";
crosshair_v.style.borderColor = "rgba(255, 0, 0, 0.75)";
crosshair_v.style.cursor = "crosshair";
crosshair_v.style.marginTop = "23px";
var brdiv = document.createElement('br');
//init control elements
var next = document.createElement('button');
var prev = document.createElement('button');
var submit = document.createElement('button');
var deleteButton = document.createElement('button');
var deleteAllbutton = document.createElement('button');
//init image containers
var image = new Image();
var canvas_img = document.createElement('canvas');
var ctx = canvas_img.getContext("2d");
canvas_img.style.cursor = "crosshair";
canvas_img.setAttribute('draggable', false);
crosshair_v.setAttribute('draggable', false);
crosshair_h.setAttribute('draggable', false);
// bounding box containers
const height = 600
var allBoundingBoxes = [];
var curr_image = 0
var im_height = 0;
var im_width = 0;
//initialize bounding boxes
for (var i = 0; i < imgs.length; i++) {
allBoundingBoxes[i] = [];
}
//initialize image view
errorlog.id = 'errorlog';
image.style.display = 'block';
image.setAttribute('draggable', false);
//load the first image
img = imgs[curr_image];
image.src = "data:image/png;base64," + img;
image.onload = function() {
// normalize display height and canvas
// image.height = height;
image_cont.height = canvas_img.height = image.height;
image_cont.width = canvas_img.width = image.naturalWidth;
crosshair_v.style.height = image_cont.height + "px";
crosshair_h.style.width = image_cont.width + "px";
// draw the new image
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
};
// move to next image in array
next.textContent = "next image";
next.onclick = function(){
if (curr_image < imgs.length - 1){
// clear canvas and load new image
curr_image += 1;
errorlog.innerHTML = "";
}
else{
errorlog.innerHTML = "All images completed!!";
}
resetcanvas();
}
//move forward through list of images
prev.textContent = "prev image"
prev.onclick = function(){
if (curr_image > 0){
// clear canvas and load new image
curr_image -= 1;
errorlog.innerHTML = "";
}
else{
errorlog.innerHTML = "at the beginning";
}
resetcanvas();
}
// on delete, deletes the last bounding box
deleteButton.textContent = "undo bbox";
deleteButton.onclick = function(){
boundingBoxes.pop();
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
image.src = "data:image/png;base64," + img;
image.onload = function() {
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
boundingBoxes.map(r => {drawRect(r)});
};
}
// on all delete, deletes all of the bounding box
deleteAllbutton.textContent = "delete all"
deleteAllbutton.onclick = function(){
boundingBoxes = [];
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
image.src = "data:image/png;base64," + img;
image.onload = function() {
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
//boundingBoxes.map(r => {drawRect(r)});
};
}
// on submit, send the boxes to display
submit.textContent = "submit";
submit.onclick = function(){
errorlog.innerHTML = "";
// send box data to callback fucntion
google.colab.kernel.invokeFunction(callbackId, [allBoundingBoxes], {});
}
// init template for annotations
const annotation = {
x: 0,
y: 0,
w: 0,
h: 0,
};
// the array of all rectangles
let boundingBoxes = allBoundingBoxes[curr_image];
// the actual rectangle, the one that is being drawn
let o = {};
// a variable to store the mouse position
let m = {},
// a variable to store the point where you begin to draw the
// rectangle
start = {};
// a boolean variable to store the drawing state
let isDrawing = false;
var elem = null;
function handleMouseDown(e) {
// on mouse click set change the cursor and start tracking the mouse position
start = oMousePos(canvas_img, e);
// configure is drawing to true
isDrawing = true;
}
function handleMouseMove(e) {
// move crosshairs, but only within the bounds of the canvas
if (document.elementsFromPoint(e.pageX, e.pageY).includes(canvas_img)) {
crosshair_h.style.top = e.pageY + "px";
crosshair_v.style.left = e.pageX + "px";
}
// move the bounding box
if(isDrawing){
m = oMousePos(canvas_img, e);
draw();
}
}
function handleMouseUp(e) {
if (isDrawing) {
// on mouse release, push a bounding box to array and draw all boxes
isDrawing = false;
const box = Object.create(annotation);
// calculate the position of the rectangle
if (o.w > 0){
box.x = o.x;
}
else{
box.x = o.x + o.w;
}
if (o.h > 0){
box.y = o.y;
}
else{
box.y = o.y + o.h;
}
box.w = Math.abs(o.w);
box.h = Math.abs(o.h);
// add the bounding box to the image
boundingBoxes.push(box);
draw();
}
}
function draw() {
o.x = (start.x)/image.width; // start position of x
o.y = (start.y)/image.height; // start position of y
o.w = (m.x - start.x)/image.width; // width
o.h = (m.y - start.y)/image.height; // height
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
// draw all the rectangles saved in the rectsRy
boundingBoxes.map(r => {drawRect(r)});
// draw the actual rectangle
drawRect(o);
}
// add the handlers needed for dragging
crosshair_h.addEventListener("mousedown", handleMouseDown);
crosshair_v.addEventListener("mousedown", handleMouseDown);
document.addEventListener("mousemove", handleMouseMove);
document.addEventListener("mouseup", handleMouseUp);
function resetcanvas(){
// clear canvas
ctx.clearRect(0, 0, canvas_img.width, canvas_img.height);
img = imgs[curr_image]
image.src = "data:image/png;base64," + img;
// onload init new canvas and display image
image.onload = function() {
// normalize display height and canvas
// image.height = height;
image_cont.height = canvas_img.height = image.height;
image_cont.width = canvas_img.width = image.naturalWidth;
crosshair_v.style.height = image_cont.height + "px";
crosshair_h.style.width = image_cont.width + "px";
// draw the new image
ctx.drawImage(image, 0, 0, image.naturalWidth, image.naturalHeight, 0, 0, canvas_img.width, canvas_img.height);
// draw bounding boxes
boundingBoxes = allBoundingBoxes[curr_image];
boundingBoxes.map(r => {drawRect(r)});
};
}
function drawRect(o){
// draw a predefined rectangle
ctx.strokeStyle = "red";
ctx.lineWidth = 2;
ctx.beginPath(o);
ctx.rect(o.x * image.width, o.y * image.height, o.w * image.width, o.h * image.height);
ctx.stroke();
}
// Function to detect the mouse position
function oMousePos(canvas_img, evt) {
let ClientRect = canvas_img.getBoundingClientRect();
return {
x: evt.clientX - ClientRect.left,
y: evt.clientY - ClientRect.top
};
}
//configure colab output display
google.colab.output.setIframeHeight(document.documentElement.scrollHeight, true);
//build the html document that will be seen in output
div.appendChild(document.createElement('br'))
div.appendChild(image_cont)
image_cont.appendChild(canvas_img)
image_cont.appendChild(crosshair_h)
image_cont.appendChild(crosshair_v)
div.appendChild(document.createElement('br'))
div.appendChild(errorlog)
div.appendChild(prev)
div.appendChild(next)
div.appendChild(deleteButton)
div.appendChild(deleteAllbutton)
div.appendChild(document.createElement('br'))
div.appendChild(brdiv)
div.appendChild(submit)
document.querySelector("#output-area").appendChild(div);
return
}''')
# load the images as a byte array
bytearrays = []
for image in image_urls:
if isinstance(image, np.ndarray):
bytearrays.append(image_from_numpy(image))
else:
raise TypeError('Image has unsupported type {}.'.format(type(image)))
# format arrays for input
image_data = json.dumps(bytearrays)
del bytearrays
# call java script function pass string byte array(image_data) as input
display(js)
eval_js('load_image({}, \'{}\')'.format(image_data, callbackId))
return
def annotate(imgs: List[Union[str, np.ndarray]], # pylint: disable=invalid-name
box_storage_pointer: List[np.ndarray],
callbackId: str = None):
"""Open the bounding box UI and prompt the user for input.
Args:
imgs: list[str | np.ndarray]
List of locations from where to load the images from. If a np.ndarray is
given, the array is interpretted as an image and sent to the frontend. If
a str is given, the string is interpreted as a path and is read as a
np.ndarray before being sent to the frontend.
box_storage_pointer: list[np.ndarray]
Destination list for bounding box arrays. Each array in this list
corresponds to one of the images given in imgs. The array is a
N x 4 array where N is the number of bounding boxes given by the user
for that particular image. If there are no bounding boxes for an image,
None is used instead of an empty array.
callbackId: str, optional
The ID for the callback function that communicates between the fontend
and the backend. If no ID is given, a random UUID string is used instead.
"""
# Set a random ID for the callback function
if callbackId is None:
callbackId = str(uuid.uuid1()).replace('-', '')
def dictToList(input_bbox): # pylint: disable=invalid-name
"""Convert bbox.
This function converts the dictionary from the frontend (if the format
{x, y, w, h} as shown in callbackFunction) into a list
([x_min, y_min, x_max, y_max])
Args:
input_bbox:
Returns:
A list with bbox coordinates in the form [x_min, y_min, x_max, y_max].
"""
return (input_bbox['x'], input_bbox['y'], input_bbox['x'] + input_bbox['w'],
input_bbox['y'] + input_bbox['h'])
def callbackFunction(annotations: List[List[Dict[str, float]]]): # pylint: disable=invalid-name
"""Callback function.
This is the call back function to capture the data from the frontend and
convert the data into a numpy array.
Args:
annotations: list[list[dict[str, float]]]
The input of the call back function is a list of list of objects
corresponding to the annotations. The format of annotations is shown
below
[
// stuff for image 1
[
// stuff for rect 1
{x, y, w, h},
// stuff for rect 2
{x, y, w, h},
...
],
// stuff for image 2
[
// stuff for rect 1
{x, y, w, h},
// stuff for rect 2
{x, y, w, h},
...
],
...
]
"""
# reset the boxes list
nonlocal box_storage_pointer
boxes: List[np.ndarray] = box_storage_pointer
boxes.clear()
# load the new annotations into the boxes list
for annotations_per_img in annotations:
rectangles_as_arrays = [np.clip(dictToList(annotation), 0, 1)
for annotation in annotations_per_img]
if rectangles_as_arrays:
boxes.append(np.stack(rectangles_as_arrays))
else:
boxes.append(None)
# output the annotations to the errorlog
with output.redirect_to_element('#errorlog'):
display('--boxes array populated--')
output.register_callback(callbackId, callbackFunction)
draw_bbox(imgs, callbackId)