-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhelper_functions.py
108 lines (97 loc) · 3.5 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from io import BytesIO
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
import requests
import torch
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def save_images(folder, search_term, count=10):
if not os.path.exists(folder):
os.mkdir(folder)
# SEARCH_URL = "https://huggingface.co/api/experimental/images/search"
# params = {"q": search_term, "license": "public", "imageType": "photo", "count": count}
SEARCH_URL = "https://pixabay.com/api/"
params = {"q": search_term.replace(' ', '+'),
"image_type": "photo",
"per_page": count,
"page": 1,
"key": os.environ["PIXABAY_KEY"]}
resp = requests.get(SEARCH_URL, params=params)
if resp.status_code == 200:
# content = resp.json()['value']
# urls = [img['thumbnailUrl'] for img in content]
content = resp.json()['hits']
urls = [img['previewURL'] for img in content]
folder = os.path.join(folder, search_term)
if not os.path.exists(folder):
os.mkdir(folder)
i = 0
for url in urls:
try:
img = get_image_from_url(url)
fname = os.path.join(folder, f'{i}.jpg')
img.save(fname)
i += 1
except Exception:
pass
print(f'Retrieved {i} images for {search_term}')
else:
print(f'Failed to retrieve URLs for {search_term}')
def show(imgs, titles=None):
import torchvision.transforms.functional as tF
if not isinstance(imgs, list):
imgs = [imgs]
fig, axs = plt.subplots(ncols=len(imgs), squeeze=False)
for i, img in enumerate(imgs):
if isinstance(img, torch.Tensor):
img = img.detach()
img = tF.to_pil_image(img)
axs[0, i].imshow(np.asarray(img))
axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
if titles is not None:
if i < len(titles):
axs[0, i].set_title(titles[i])
return fig
def get_image_from_url(url, headers=None):
resp = requests.get(url, headers=headers)
resp.raise_for_status()
img = Image.open(BytesIO(resp.content))
return img
def xml_to_csv(path):
"""Iterates through all .xml files (generated by labelImg) in a given directory and combines
them in a single Pandas dataframe.
Parameters:
----------
path : str
The path containing the .xml files
Returns
-------
Pandas DataFrame
The produced dataframe
"""
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
filename = root.find('filename').text
width = int(root.find('size').find('width').text)
height = int(root.find('size').find('height').text)
for member in root.findall('object'):
bndbox = member.find('bndbox')
value = (filename,
width,
height,
member.find('name').text,
int(bndbox.find('xmin').text),
int(bndbox.find('ymin').text),
int(bndbox.find('xmax').text),
int(bndbox.find('ymax').text),
)
xml_list.append(value)
column_name = ['filename', 'width', 'height',
'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df