diff --git a/docs/notebooks/tutorials/analytical-ir.ipynb b/docs/notebooks/tutorials/analytical-ir.ipynb index be22977..f92f4e5 100644 --- a/docs/notebooks/tutorials/analytical-ir.ipynb +++ b/docs/notebooks/tutorials/analytical-ir.ipynb @@ -187,7 +187,7 @@ "metadata": {}, "source": [ "```{note}\n", - "The [core.solve](nuance.core.solve) function returns a function that computes the depth of a transt given its epoch and duration, it has the signature `function(epoch, duration, period=None, depth=None) -> (log_likelihood, weights, variance)`. When the `depth` parameter is set, the function computes the depth of a transit **injected** with this `depth`. Usually `depth=None`, as this feature is only useful for injection-recovery estimates.\n", + "The [core.solve](nuance.core.solve) function returns a function that computes the depth of a transt given its epoch and duration, it has the signature `function(epoch, duration, period=None, depth=None) -> (depth, depth_variance, log_likelihood)`. When the `depth` parameter is set, the function computes the depth of a transit **injected** with this `depth`. Usually `depth=None`, as this feature is only useful for injection-recovery estimates.\n", "```" ] }, diff --git a/nuance/core.py b/nuance/core.py index 1485a3a..c43e0bc 100644 --- a/nuance/core.py +++ b/nuance/core.py @@ -115,7 +115,7 @@ def solve(time, flux, gp=None, X=None, model=None): callable function that computes the log likelihood of data assuming it is drawn from a Gaussian Process with a mean linear model. Signature is: - :code:`function(epoch, duration, period=None) -> (log_likelihood, weights, variance)` + ``function(epoch, duration, period=None) -> (depth, depth_variance, log_likelihood)`` """ X, gp, model = check_default(time, X, gp, model)