-
Notifications
You must be signed in to change notification settings - Fork 23
/
mag.c
620 lines (559 loc) · 17.1 KB
/
mag.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/* remaining problems:
1. multiedges due to tandem repeats
*/
#include <math.h>
#include <zlib.h>
#include <stdio.h>
#include <assert.h>
#include "mag.h"
#include "kvec.h"
#include "internal.h"
#include "kseq.h"
KSEQ_DECLARE(gzFile)
#include "khash.h"
KHASH_INIT2(64,, khint64_t, uint64_t, 1, kh_int64_hash_func, kh_int64_hash_equal)
typedef khash_t(64) hash64_t;
#define ku128_xlt(a, b) ((a).x < (b).x || ((a).x == (b).x && (a).y > (b).y))
#define ku128_ylt(a, b) ((int64_t)(a).y > (int64_t)(b).y)
#include "ksort.h"
KSORT_INIT(128x, ku128_t, ku128_xlt)
KSORT_INIT(128y, ku128_t, ku128_ylt)
KSORT_INIT_GENERIC(uint64_t)
#define edge_mark_del(_x) ((_x).x = (uint64_t)-2, (_x).y = 0)
#define edge_is_del(_x) ((_x).x == (uint64_t)-2 || (_x).y == 0)
int fm_verbose = 1;
/*********************
* Vector operations *
*********************/
static inline void v128_clean(ku128_v *r)
{
int i, j;
for (i = j = 0; i < r->n; ++i)
if (!edge_is_del(r->a[i])) { // keep this arc
if (j != i) r->a[j++] = r->a[i];
else ++j;
}
r->n = j;
}
void mag_v128_clean(ku128_v *r)
{
v128_clean(r);
}
static inline void v128_rmdup(ku128_v *r)
{
int l, cnt;
uint64_t x;
if (r->n > 1) ks_introsort(128x, r->n, r->a);
for (l = cnt = 0; l < r->n; ++l) // jump to the first node to be retained
if (edge_is_del(r->a[l])) ++cnt;
else break;
if (l == r->n) { // no good arcs
r->n = 0;
return;
}
x = r->a[l].x;
for (++l; l < r->n; ++l) { // mark duplicated node
if (edge_is_del(r->a[l]) || r->a[l].x == x)
edge_mark_del(r->a[l]), ++cnt;
else x = r->a[l].x;
}
if (cnt) v128_clean(r);
}
static inline void v128_cap(ku128_v *r, int max)
{
int i, thres;
if (r->n <= max) return;
ks_introsort(128y, r->n, r->a);
thres = r->a[max].y;
for (i = 0; i < r->n; ++i)
if (r->a[i].y == thres) break;
r->n = i;
}
/*************************************************
* Mapping between vertex id and interval end id *
*************************************************/
void mag_g_build_hash(mag_t *g)
{
long i;
int j, ret;
hash64_t *h;
h = kh_init(64);
for (i = 0; i < g->v.n; ++i) {
const magv_t *p = &g->v.a[i];
for (j = 0; j < 2; ++j) {
khint_t k = kh_put(64, h, p->k[j], &ret);
if (ret == 0) {
if (fm_verbose >= 2)
fprintf(stderr, "[W::%s] terminal %ld is duplicated.\n", __func__, (long)p->k[j]);
kh_val(h, k) = (uint64_t)-1;
} else kh_val(h, k) = i<<1|j;
}
}
g->h = h;
}
static inline uint64_t tid2idd(hash64_t *h, uint64_t tid)
{
khint_t k = kh_get(64, h, tid);
assert(k != kh_end(h));
return kh_val(h, k);
}
uint64_t mag_tid2idd(void *h, uint64_t tid) // exported version
{
return tid2idd(h, tid);
}
void mag_g_amend(mag_t *g)
{
int i, j, l, ll;
for (i = 0; i < g->v.n; ++i) {
magv_t *p = &g->v.a[i];
ku128_v *r;
for (j = 0; j < 2; ++j) {
for (l = 0; l < p->nei[j].n; ++l) {
khint_t k;
uint64_t z, x = p->nei[j].a[l].x;
k = kh_get(64, g->h, x);
if (k == kh_end((hash64_t*)g->h)) { // neighbor is not in the hash table; likely due to tip removal
edge_mark_del(p->nei[j].a[l]);
continue;
} else z = kh_val((hash64_t*)g->h, k);
r = &g->v.a[z>>1].nei[z&1];
for (ll = 0, z = p->k[j]; ll < r->n; ++ll)
if (r->a[ll].x == z) break;
if (ll == r->n) // not in neighbor's neighor
edge_mark_del(p->nei[j].a[l]);
}
v128_rmdup(&p->nei[j]);
}
}
}
/*********************************
* Graph I/O initialization etc. *
*********************************/
void mag_v_write(const magv_t *p, kstring_t *out)
{
int j, k;
if (p->len <= 0) return;
out->l = 0;
kputc('@', out); kputl(p->k[0], out); kputc(':', out); kputl(p->k[1], out);
kputc('\t', out); kputw(p->nsr, out);
for (j = 0; j < 2; ++j) {
const ku128_v *r = &p->nei[j];
kputc('\t', out);
for (k = 0; k < r->n; ++k) {
if (edge_is_del(r->a[k])) continue;
kputl(r->a[k].x, out); kputc(',', out); kputw((int32_t)r->a[k].y, out);
kputc(';', out);
}
if (p->nei[j].n == 0) kputc('.', out);
}
kputc('\n', out);
ks_resize(out, out->l + 2 * p->len + 5);
for (j = 0; j < p->len; ++j)
out->s[out->l++] = "ACGT"[(int)p->seq[j] - 1];
out->s[out->l] = 0;
kputsn("\n+\n", 3, out);
kputsn(p->cov, p->len, out);
kputc('\n', out);
}
void mag_g_print(const mag_t *g)
{
int i;
kstring_t out;
out.l = out.m = 0; out.s = 0;
for (i = 0; i < g->v.n; ++i) {
if (g->v.a[i].len < 0) continue;
mag_v_write(&g->v.a[i], &out);
fwrite(out.s, 1, out.l, stdout);
}
free(out.s);
fflush(stdout);
}
/**************************
* Basic graph operations *
**************************/
void mag_v_destroy(magv_t *v)
{
free(v->nei[0].a); free(v->nei[1].a);
free(v->seq); free(v->cov);
memset(v, 0, sizeof(magv_t));
v->len = -1;
}
void mag_g_destroy(mag_t *g)
{
int i;
kh_destroy(64, g->h);
for (i = 0; i < g->v.n; ++i)
mag_v_destroy(&g->v.a[i]);
free(g->v.a);
free(g);
}
void mag_v_copy_to_empty(magv_t *dst, const magv_t *src) // NB: memory leak if dst is allocated
{
memcpy(dst, src, sizeof(magv_t));
dst->max_len = dst->len + 1;
kroundup32(dst->max_len);
dst->seq = calloc(dst->max_len, 1); memcpy(dst->seq, src->seq, src->len);
dst->cov = calloc(dst->max_len, 1); memcpy(dst->cov, src->cov, src->len);
kv_init(dst->nei[0]); kv_copy(ku128_t, dst->nei[0], src->nei[0]);
kv_init(dst->nei[1]); kv_copy(ku128_t, dst->nei[1], src->nei[1]);
}
void mag_eh_add(mag_t *g, uint64_t u, uint64_t v, int ovlp) // add v to u
{
ku128_v *r;
ku128_t *q;
uint64_t idd;
int i;
if ((int64_t)u < 0) return;
idd = tid2idd(g->h, u);
r = &g->v.a[idd>>1].nei[idd&1];
for (i = 0; i < r->n; ++i) // no multi-edges
if (r->a[i].x == v) return;
kv_pushp(ku128_t, *r, &q);
q->x = v; q->y = ovlp;
}
void mag_eh_markdel(mag_t *g, uint64_t u, uint64_t v) // mark deletion of v from u
{
int i;
uint64_t idd;
if ((int64_t)u < 0) return;
idd = tid2idd(g->h, u);
ku128_v *r = &g->v.a[idd>>1].nei[idd&1];
for (i = 0; i < r->n; ++i)
if (r->a[i].x == v) edge_mark_del(r->a[i]);
}
void mag_v_del(mag_t *g, magv_t *p)
{
int i, j;
khint_t k;
if (p->len < 0) return;
for (i = 0; i < 2; ++i) {
ku128_v *r = &p->nei[i];
for (j = 0; j < r->n; ++j)
if (!edge_is_del(r->a[j]) && r->a[j].x != p->k[0] && r->a[j].x != p->k[1])
mag_eh_markdel(g, r->a[j].x, p->k[i]);
}
for (i = 0; i < 2; ++i) {
k = kh_get(64, g->h, p->k[i]);
kh_del(64, g->h, k);
}
mag_v_destroy(p);
}
void mag_v_transdel(mag_t *g, magv_t *p, int min_ovlp)
{
if (p->nei[0].n && p->nei[1].n) {
int i, j, ovlp;
for (i = 0; i < p->nei[0].n; ++i) {
if (edge_is_del(p->nei[0].a[i]) || p->nei[0].a[i].x == p->k[0] || p->nei[0].a[i].x == p->k[1]) continue; // due to p->p loop
for (j = 0; j < p->nei[1].n; ++j) {
if (edge_is_del(p->nei[1].a[j]) || p->nei[1].a[j].x == p->k[0] || p->nei[1].a[j].x == p->k[1]) continue;
ovlp = (int)(p->nei[0].a[i].y + p->nei[1].a[j].y) - p->len;
if (ovlp >= min_ovlp) {
mag_eh_add(g, p->nei[0].a[i].x, p->nei[1].a[j].x, ovlp);
mag_eh_add(g, p->nei[1].a[j].x, p->nei[0].a[i].x, ovlp);
}
}
}
}
mag_v_del(g, p);
}
void mag_v_flip(mag_t *g, magv_t *p)
{
ku128_v t;
khint_t k;
hash64_t *h = (hash64_t*)g->h;
seq_revcomp6(p->len, (uint8_t*)p->seq);
seq_reverse(p->len, (uint8_t*)p->cov);
p->k[0] ^= p->k[1]; p->k[1] ^= p->k[0]; p->k[0] ^= p->k[1];
t = p->nei[0]; p->nei[0] = p->nei[1]; p->nei[1] = t;
k = kh_get(64, h, p->k[0]);
assert(k != kh_end(h));
kh_val(h, k) ^= 1;
k = kh_get(64, h, p->k[1]);
assert(k != kh_end(h));
kh_val(h, k) ^= 1;
}
/*********************
* Unambiguous merge *
*********************/
int mag_vh_merge_try(mag_t *g, magv_t *p, int min_merge_len) // merge p's neighbor to the right-end of p
{
magv_t *q;
khint_t kp, kq;
int i, j, new_l;
hash64_t *h = (hash64_t*)g->h;
// check if an unambiguous merge can be performed
if (p->nei[1].n != 1) return -1; // multiple or no neighbor; do not merge
if ((int64_t)p->nei[1].a[0].x < 0) return -2; // deleted neighbor
if ((int)p->nei[1].a[0].y < min_merge_len) return -5;
kq = kh_get(64, g->h, p->nei[1].a[0].x);
assert(kq != kh_end(h)); // otherwise the neighbor is non-existant
q = &g->v.a[kh_val((hash64_t*)g->h, kq)>>1];
if (p == q) return -3; // we have a loop p->p. We cannot merge in this case
if (q->nei[kh_val(h, kq)&1].n != 1) return -4; // the neighbor q has multiple neighbors. cannot be an unambiguous merge
// we can perform a merge; do further consistency check (mostly check bugs)
if (kh_val(h, kq)&1) mag_v_flip(g, q); // a "><" bidirectional arc; flip q
kp = kh_get(64, g->h, p->k[1]); assert(kp != kh_end(h)); // get the iterator to p
kh_del(64, g->h, kp); kh_del(64, g->h, kq); // remove the two ends of the arc in the hash table
assert(p->k[1] == q->nei[0].a[0].x && q->k[0] == p->nei[1].a[0].x); // otherwise inconsistent topology
assert(p->nei[1].a[0].y == q->nei[0].a[0].y); // the overlap length must be the same
assert(p->len >= p->nei[1].a[0].y && q->len >= p->nei[1].a[0].y); // and the overlap is shorter than both vertices
// update the read count and sequence length
p->nsr += q->nsr;
new_l = p->len + q->len - p->nei[1].a[0].y;
if (new_l + 1 > p->max_len) { // then double p->seq and p->cov
p->max_len = new_l + 1;
kroundup32(p->max_len);
p->seq = realloc(p->seq, p->max_len);
p->cov = realloc(p->cov, p->max_len);
}
// merge seq and cov
for (i = p->len - p->nei[1].a[0].y, j = 0; j < q->len; ++i, ++j) { // write seq and cov
p->seq[i] = q->seq[j];
if (i < p->len) {
if ((int)p->cov[i] + (q->cov[j] - 33) > 126) p->cov[i] = 126;
else p->cov[i] += q->cov[j] - 33;
} else p->cov[i] = q->cov[j];
}
p->seq[new_l] = p->cov[new_l] = 0;
p->len = new_l;
// merge neighbors
free(p->nei[1].a);
p->nei[1] = q->nei[1]; p->k[1] = q->k[1];
q->nei[1].a = 0; // to avoid freeing p->nei[1] by mag_v_destroy() below
// update the hash table for the right end of p
kp = kh_get(64, g->h, p->k[1]);
assert(kp != kh_end((hash64_t*)g->h));
kh_val(h, kp) = (p - g->v.a)<<1 | 1;
// clean up q
mag_v_destroy(q);
return 0;
}
void mag_g_merge(mag_t *g, int rmdup, int min_merge_len)
{
int i;
uint64_t n = 0;
for (i = 0; i < g->v.n; ++i) { // remove multiedges; FIXME: should we do that?
if (rmdup) {
v128_rmdup(&g->v.a[i].nei[0]);
v128_rmdup(&g->v.a[i].nei[1]);
} else {
v128_clean(&g->v.a[i].nei[0]);
v128_clean(&g->v.a[i].nei[1]);
}
}
for (i = 0; i < g->v.n; ++i) {
magv_t *p = &g->v.a[i];
if (p->len < 0) continue;
while (mag_vh_merge_try(g, p, min_merge_len) == 0) ++n;
mag_v_flip(g, p);
while (mag_vh_merge_try(g, p, min_merge_len) == 0) ++n;
}
if (fm_verbose >= 3)
fprintf(stderr, "[M::%s] unambiguously merged %ld pairs of vertices\n", __func__, (long)n);
}
/*****************************
* Easy graph simplification *
*****************************/
typedef magv_t *magv_p;
#define mag_vlt1(a, b) ((a)->nsr < (b)->nsr || ((a)->nsr == (b)->nsr && (a)->len < (b)->len))
KSORT_INIT(vlt1, magv_p, mag_vlt1)
#define mag_vlt2(a, b) ((a)->nei[0].n + (a)->nei[1].n < (b)->nei[0].n + (b)->nei[1].n)
KSORT_INIT(vlt2, magv_p, mag_vlt2)
int mag_g_rm_vext(mag_t *g, int min_len, int min_nsr)
{
int i;
kvec_t(magv_p) a = {0,0,0};
for (i = 0; i < g->v.n; ++i) {
magv_t *p = &g->v.a[i];
if (p->len < 0 || (p->nei[0].n > 0 && p->nei[1].n > 0)) continue;
if (p->len >= min_len || p->nsr >= min_nsr) continue;
kv_push(magv_p, a, p);
}
ks_introsort(vlt1, a.n, a.a);
for (i = 0; i < a.n; ++i) mag_v_del(g, a.a[i]);
free(a.a);
if (fm_verbose >= 3)
fprintf(stderr, "[M::%s] removed %ld tips (min_len=%d, min_nsr=%d)\n", __func__, a.n, min_len, min_nsr);
return a.n;
}
int mag_g_rm_vint(mag_t *g, int min_len, int min_nsr, int min_ovlp)
{
int i;
kvec_t(magv_p) a = {0,0,0};
for (i = 0; i < g->v.n; ++i) {
magv_t *p = &g->v.a[i];
if (p->len >= 0 && p->len < min_len && p->nsr < min_nsr)
kv_push(magv_p, a, p);
}
ks_introsort(vlt1, a.n, a.a);
for (i = 0; i < a.n; ++i) mag_v_transdel(g, a.a[i], min_ovlp);
free(a.a);
if (fm_verbose >= 3)
fprintf(stderr, "[M::%s] removed %ld internal vertices (min_len=%d, min_nsr=%d)\n", __func__, a.n, min_len, min_nsr);
return a.n;
}
void mag_g_rm_edge(mag_t *g, int min_ovlp, double min_ratio, int min_len, int min_nsr)
{
int i, j, k;
kvec_t(magv_p) a = {0,0,0};
uint64_t n_marked = 0;
for (i = 0; i < g->v.n; ++i) {
magv_t *p = &g->v.a[i];
if (p->len < 0) continue;
if ((p->nei[0].n == 0 || p->nei[1].n == 0) && p->len < min_len && p->nsr < min_nsr)
continue; // skip tips
kv_push(magv_p, a, p);
}
ks_introsort(vlt1, a.n, a.a);
for (i = a.n - 1; i >= 0; --i) {
magv_t *p = a.a[i];
for (j = 0; j < 2; ++j) {
ku128_v *r = &p->nei[j];
int max_ovlp = min_ovlp, max_k = -1;
if (r->n == 0) continue; // no overlapping reads
for (k = 0; k < r->n; ++k) // get the max overlap length
if (max_ovlp < r->a[k].y)
max_ovlp = r->a[k].y, max_k = k;
if (max_k >= 0) { // test if max_k is a tip
uint64_t x = tid2idd(g->h, r->a[max_k].x);
magv_t *q = &g->v.a[x>>1];
if (q->len >= 0 && (q->nei[0].n == 0 || q->nei[1].n == 0) && q->len < min_len && q->nsr < min_nsr)
max_ovlp = min_ovlp;
}
for (k = 0; k < r->n; ++k) {
if (edge_is_del(r->a[k])) continue;
if (r->a[k].y < min_ovlp || (double)r->a[k].y / max_ovlp < min_ratio) {
mag_eh_markdel(g, r->a[k].x, p->k[j]); // FIXME: should we check if r->a[k] is p itself?
edge_mark_del(r->a[k]);
++n_marked;
}
}
}
}
free(a.a);
if (fm_verbose >= 3)
fprintf(stderr, "[M::%s] removed %ld edges\n", __func__, (long)n_marked);
}
/*********************************************
* A-statistics and simplistic flow analysis *
*********************************************/
#define A_THRES 20.
#define A_MIN_SUPP 5
double mag_cal_rdist(mag_t *g)
{
magv_v *v = &g->v;
int j;
uint64_t *srt;
double rdist = -1.;
int64_t i, sum_n_all, sum_n, sum_l;
srt = calloc(v->n, 8);
for (i = 0, sum_n_all = 0; i < v->n; ++i) {
srt[i] = (uint64_t)v->a[i].nsr<<32 | i;
sum_n_all += v->a[i].nsr;
}
ks_introsort_uint64_t(v->n, srt);
for (j = 0; j < 2; ++j) {
sum_n = sum_l = 0;
for (i = v->n - 1; i >= 0; --i) {
const magv_t *p = &v->a[srt[i]<<32>>32];
int tmp1, tmp2;
tmp1 = tmp2 = 0;
if (p->nei[0].n) ++tmp1, tmp2 += p->nei[0].a[0].y;
if (p->nei[1].n) ++tmp1, tmp2 += p->nei[1].a[0].y;
if (tmp1) tmp2 /= tmp1;
if (rdist > 0.) {
double A = (p->len - tmp1) / rdist - p->nsr * M_LN2;
if (A < A_THRES) continue;
}
sum_n += p->nsr;
sum_l += p->len - tmp1;
if (sum_n >= sum_n_all * 0.5) break;
}
rdist = (double)sum_l / sum_n;
}
if (fm_verbose >= 3) {
fprintf(stderr, "[M::%s] average read distance %.3f.\n", __func__, rdist);
fprintf(stderr, "[M::%s] approximate genome size: %.0f (inaccurate!)\n", __func__, rdist * sum_n_all);
}
free(srt);
return rdist;
}
/**************
* Key portal *
**************/
void mag_init_opt(magopt_t *o)
{
memset(o, 0, sizeof(magopt_t));
o->trim_len = 0;
o->trim_depth = 6;
o->min_elen = 300;
o->min_ovlp = 0;
o->min_merge_len = 0;
o->min_ensr = 4;
o->min_insr = 3;
o->min_dratio1 = 0.7;
o->max_bcov = 10.;
o->max_bfrac = 0.15;
o->max_bvtx = 64;
o->max_bdist = 512;
o->max_bdiff = 50;
}
void mag_g_clean(mag_t *g, const magopt_t *opt)
{
int j;
if (g->min_ovlp < opt->min_ovlp) g->min_ovlp = opt->min_ovlp;
for (j = 2; j <= opt->min_ensr; ++j)
mag_g_rm_vext(g, opt->min_elen, j);
mag_g_merge(g, 0, opt->min_merge_len);
mag_g_rm_edge(g, g->min_ovlp, opt->min_dratio1, opt->min_elen, opt->min_ensr);
mag_g_merge(g, 1, opt->min_merge_len);
for (j = 2; j <= opt->min_ensr; ++j)
mag_g_rm_vext(g, opt->min_elen, j);
mag_g_merge(g, 0, opt->min_merge_len);
if ((opt->flag & MAG_F_AGGRESSIVE) || (opt->flag & MAG_F_POPOPEN)) mag_g_pop_open(g, opt->min_elen);
if (!(opt->flag & MAG_F_NO_SIMPL)) mag_g_simplify_bubble(g, opt->max_bvtx, opt->max_bdist);
mag_g_pop_simple(g, opt->max_bcov, opt->max_bfrac, opt->min_merge_len, opt->max_bdiff, opt->flag & MAG_F_AGGRESSIVE);
mag_g_rm_vint(g, opt->min_elen, opt->min_insr, g->min_ovlp);
mag_g_rm_edge(g, g->min_ovlp, opt->min_dratio1, opt->min_elen, opt->min_ensr);
mag_g_merge(g, 1, opt->min_merge_len);
mag_g_rm_vext(g, opt->min_elen, opt->min_ensr);
mag_g_merge(g, 0, opt->min_merge_len);
if ((opt->flag & MAG_F_AGGRESSIVE) || (opt->flag & MAG_F_POPOPEN)) mag_g_pop_open(g, opt->min_elen);
mag_g_rm_vext(g, opt->min_elen, opt->min_ensr);
mag_g_merge(g, 0, opt->min_merge_len);
}
void mag_v_trim_open(mag_t *g, magv_t *v, int trim_len, int trim_depth)
{
int i, j, tl[2];
if (v->nei[0].n > 0 && v->nei[1].n > 0) return; // no open end; do nothing
if (v->nei[0].n == 0 && v->nei[1].n == 0 && v->len < trim_len * 3) { // disconnected short vertex
mag_v_del(g, v);
return;
}
for (j = 0; j < 2; ++j) {
ku128_v *r = &v->nei[!j];
int max_ovlp = 0;
for (i = 0; i < r->n; ++i)
max_ovlp = max_ovlp > r->a[i].y? max_ovlp : r->a[i].y;
tl[j] = v->len - max_ovlp < trim_len? v->len - max_ovlp : trim_len;
}
if (v->nei[0].n == 0) {
for (i = 0; i < tl[0] && v->cov[i] - 33 < trim_depth; ++i);
tl[0] = i;
v->len -= i;
memmove(v->seq, v->seq + tl[0], v->len);
memmove(v->cov, v->cov + tl[0], v->len);
}
if (v->nei[1].n == 0) {
for (i = v->len - 1; i >= v->len - tl[1] && v->cov[i] - 33 < trim_depth; --i);
tl[1] = v->len - 1 - i;
v->len -= tl[1];
}
}
void mag_g_trim_open(mag_t *g, const magopt_t *opt)
{
int i;
if (opt->trim_len == 0) return;
for (i = 0; i < g->v.n; ++i)
mag_v_trim_open(g, &g->v.a[i], opt->trim_len, opt->trim_depth);
}