-
Notifications
You must be signed in to change notification settings - Fork 25
/
ksw2_gg2_sse.c
127 lines (114 loc) · 5.27 KB
/
ksw2_gg2_sse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include <stdio.h> // for debugging only
#include "ksw2.h"
#ifdef __SSE2__
#include <emmintrin.h>
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif
int ksw_gg2_sse(void *km, int qlen, const uint8_t *query, int tlen, const uint8_t *target, int8_t m, const int8_t *mat, int8_t q, int8_t e, int w, int *m_cigar_, int *n_cigar_, uint32_t **cigar_)
{
int r, t, n_col, n_col_, *off, tlen_, last_st, last_en, H0 = 0, last_H0_t = 0;
uint8_t *qr, *mem, *mem2;
__m128i *u, *v, *x, *y, *s, *p;
__m128i q_, qe2_, zero_, flag1_, flag2_, flag8_, flag16_;
zero_ = _mm_set1_epi8(0);
q_ = _mm_set1_epi8(q);
qe2_ = _mm_set1_epi8((q + e) * 2);
flag1_ = _mm_set1_epi8(1);
flag2_ = _mm_set1_epi8(2);
flag8_ = _mm_set1_epi8(0x08);
flag16_ = _mm_set1_epi8(0x10);
if (w < 0) w = tlen > qlen? tlen : qlen;
n_col = w + 1 < tlen? w + 1 : tlen; // number of columns in the backtrack matrix
tlen_ = (tlen + 15) / 16;
n_col_ = (n_col + 15) / 16 + 1;
n_col = n_col_ * 16;
mem = (uint8_t*)kcalloc(km, tlen_ * 5 + 1, 16);
u = (__m128i*)(((size_t)mem + 15) >> 4 << 4); // 16-byte aligned
v = u + tlen_, x = v + tlen_, y = x + tlen_, s = y + tlen_;
qr = (uint8_t*)kcalloc(km, qlen, 1);
mem2 = (uint8_t*)kmalloc(km, ((size_t)(qlen + tlen - 1) * n_col_ + 1) * 16);
p = (__m128i*)(((size_t)mem2 + 15) >> 4 << 4);
off = (int*)kmalloc(km, (qlen + tlen - 1) * sizeof(int));
for (t = 0; t < qlen; ++t)
qr[t] = query[qlen - 1 - t];
for (r = 0, last_st = last_en = -1; r < qlen + tlen - 1; ++r) {
int st = 0, en = tlen - 1, st0, en0, st_, en_;
int8_t x1, v1;
__m128i x1_, v1_, *pr;
// find the boundaries
if (st < r - qlen + 1) st = r - qlen + 1;
if (en > r) en = r;
if (st < (r-w+1)>>1) st = (r-w+1)>>1; // take the ceil
if (en > (r+w)>>1) en = (r+w)>>1; // take the floor
st0 = st, en0 = en;
st = st / 16 * 16, en = (en + 16) / 16 * 16 - 1;
off[r] = st;
// set boundary conditions
if (st > 0) {
if (st - 1 >= last_st && st - 1 <= last_en)
x1 = ((uint8_t*)x)[st - 1], v1 = ((uint8_t*)v)[st - 1]; // (r-1,s-1) calculated in the last round
else x1 = v1 = 0; // not calculated; set to zeros
} else x1 = 0, v1 = r? q : 0;
if (en >= r) ((uint8_t*)y)[r] = 0, ((uint8_t*)u)[r] = r? q : 0;
// loop fission: set scores first
for (t = st0; t <= en0; ++t)
((uint8_t*)s)[t] = mat[target[t] * m + qr[t + qlen - 1 - r]];
// core loop
x1_ = _mm_cvtsi32_si128(x1);
v1_ = _mm_cvtsi32_si128(v1);
st_ = st>>4, en_ = en>>4;
pr = p + (size_t)r * n_col_ - st_;
for (t = st_; t <= en_; ++t) {
__m128i d, z, a, b, xt1, vt1, ut, tmp;
z = _mm_add_epi8(_mm_load_si128(&s[t]), qe2_);
xt1 = _mm_load_si128(&x[t]); // xt1 <- x[r-1][t..t+15]
tmp = _mm_srli_si128(xt1, 15); // tmp <- x[r-1][t+15]
xt1 = _mm_or_si128(_mm_slli_si128(xt1, 1), x1_); // xt1 <- x[r-1][t-1..t+14]
x1_ = tmp;
vt1 = _mm_load_si128(&v[t]); // vt1 <- v[r-1][t..t+15]
tmp = _mm_srli_si128(vt1, 15); // tmp <- v[r-1][t+15]
vt1 = _mm_or_si128(_mm_slli_si128(vt1, 1), v1_); // vt1 <- v[r-1][t-1..t+14]
v1_ = tmp;
a = _mm_add_epi8(xt1, vt1); // a <- x[r-1][t-1..t+14] + v[r-1][t-1..t+14]
ut = _mm_load_si128(&u[t]); // ut <- u[t..t+15]
b = _mm_add_epi8(_mm_load_si128(&y[t]), ut); // b <- y[r-1][t..t+15] + u[r-1][t..t+15]
d = _mm_and_si128(_mm_cmpgt_epi8(a, z), flag1_); // d = a > z? 1 : 0
#ifdef __SSE4_1__
z = _mm_max_epi8(z, a); // z = z > a? z : a (signed)
tmp = _mm_cmpgt_epi8(b, z);
d = _mm_blendv_epi8(d, flag2_, tmp); // d = b > z? 2 : d
#else // we need to emulate SSE4.1 intrinsics _mm_max_epi8() and _mm_blendv_epi8()
z = _mm_and_si128(z, _mm_cmpgt_epi8(z, zero_)); // z = z > 0? z : 0;
z = _mm_max_epu8(z, a); // z = max(z, a); this works because both are non-negative
tmp = _mm_cmpgt_epi8(b, z);
d = _mm_or_si128(_mm_andnot_si128(tmp, d), _mm_and_si128(tmp, flag2_)); // d = b > z? 2 : d; emulating blendv
#endif
z = _mm_max_epu8(z, b); // z = max(z, b); this works because both are non-negative
_mm_store_si128(&u[t], _mm_sub_epi8(z, vt1)); // u[r][t..t+15] <- z - v[r-1][t-1..t+14]
_mm_store_si128(&v[t], _mm_sub_epi8(z, ut)); // v[r][t..t+15] <- z - u[r-1][t..t+15]
z = _mm_sub_epi8(z, q_);
a = _mm_sub_epi8(a, z);
b = _mm_sub_epi8(b, z);
tmp = _mm_cmpgt_epi8(a, zero_);
d = _mm_or_si128(d, _mm_and_si128(flag8_, tmp));
_mm_store_si128(&x[t], _mm_and_si128(a, tmp));
tmp = _mm_cmpgt_epi8(b, zero_);
d = _mm_or_si128(d, _mm_and_si128(flag16_, tmp));
_mm_store_si128(&y[t], _mm_and_si128(b, tmp));
_mm_store_si128(&pr[t], d);
}
if (r > 0) {
if (last_H0_t >= st0 && last_H0_t <= en0)
H0 += ((uint8_t*)v)[last_H0_t] - (q + e);
else ++last_H0_t, H0 += ((uint8_t*)u)[last_H0_t] - (q + e);
} else H0 = ((uint8_t*)v)[0] - 2 * (q + e), last_H0_t = 0;
last_st = st, last_en = en;
//for (t = st0; t <= en0; ++t) printf("(%d,%d)\t(%d,%d,%d,%d)\t%x\n", r, t, ((uint8_t*)u)[t], ((uint8_t*)v)[t], ((uint8_t*)x)[t], ((uint8_t*)y)[t], ((uint8_t*)(p + r * n_col_))[t-st]); // for debugging
}
kfree(km, mem); kfree(km, qr);
ksw_backtrack(km, 1, 0, 0, (uint8_t*)p, off, 0, n_col, tlen-1, qlen-1, m_cigar_, n_cigar_, cigar_);
kfree(km, mem2); kfree(km, off);
return H0;
}
#endif // __SSE2__