forked from KarenWest/edx-ai-project1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
150 lines (116 loc) · 4.44 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
from game import Directions
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
s = Directions.SOUTH
w = Directions.WEST
return [s,s,w,s,w,w,s,w]
def depthFirstSearch(problem):
fringe = util.Stack()
fringe.push( (problem.getStartState(), [], []) )
while not fringe.isEmpty():
node, actions, visited = fringe.pop()
for coord, direction, steps in problem.getSuccessors(node):
if not coord in visited:
if problem.isGoalState(coord):
return actions + [direction]
fringe.push((coord, actions + [direction], visited + [node] ))
return []
def breadthFirstSearch(problem):
fringe = util.Queue()
fringe.push( (problem.getStartState(), []) )
visited = []
while not fringe.isEmpty():
node, actions = fringe.pop()
for coord, direction, steps in problem.getSuccessors(node):
if not coord in visited:
if problem.isGoalState(coord):
return actions + [direction]
fringe.push((coord, actions + [direction]))
visited.append(coord)
return []
def uniformCostSearch(problem):
fringe = util.PriorityQueue()
fringe.push( (problem.getStartState(), []), 0)
explored = []
while not fringe.isEmpty():
node, actions = fringe.pop()
if problem.isGoalState(node):
return actions
explored.append(node)
for coord, direction, steps in problem.getSuccessors(node):
if not coord in explored:
new_actions = actions + [direction]
fringe.push((coord, new_actions), problem.getCostOfActions(new_actions))
return []
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
closedset = []
fringe = util.PriorityQueue()
start = problem.getStartState()
fringe.push( (start, []), heuristic(start, problem))
while not fringe.isEmpty():
node, actions = fringe.pop()
if problem.isGoalState(node):
return actions
closedset.append(node)
for coord, direction, cost in problem.getSuccessors(node):
if not coord in closedset:
new_actions = actions + [direction]
score = problem.getCostOfActions(new_actions) + heuristic(coord, problem)
fringe.push( (coord, new_actions), score)
return []
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch