Sculpt is a compiler plugin for analyzing the dependency structure of Scala source code.
This is unfinished, unmaintained software. We are releasing it as open source as a public service with the hopes the code will be useful to someone.
Sculpt is NOT supported under the Lightbend subscription.
Supported Scala versions are currently 2.13.x and 2.12.x.
The data generated by the plugin should be useful for all sorts of refactoring efforts, including carving a monolithic codebase into independent subprojects.
The plugin analyzes source code, not generated bytecode. The analysis code is based on code from the incremental compiler in sbt and zinc. Therefore, the plugin should be an accurate source of information for developers looking to reduce dependencies in order to reduce incremental compile times.
sbt assembly
will create target/scala-2.13/scala-sculpt_2.13-0.1.4.jar
.
(The JAR is a fat JAR that bundles its dependency on spray-json.)
You can use the compiled plugin with the Scala compiler as follows.
Supposing you have scala-sculpt_2.13-0.1.4.jar
in your current working directory,
Then you can do e.g.:
scalac -Xplugin:scala-sculpt_2.13-0.1.4.jar \
-Xplugin-require:sculpt \
-P:sculpt:out=dep.json \
Dep.scala
Assuming Dep.scala
contains this source code:
object Dep1 { val x = 42; val y = Dep2.z }
object Dep2 { val z = Dep1.x }
then the command line shown above will generate this dep.json
file:
[
{"sym": ["o:Dep1"], "extends": ["pkt:scala", "tp:AnyRef"]},
{"sym": ["o:Dep1", "def:<init>"], "uses": ["o:Dep1"]},
{"sym": ["o:Dep1", "def:<init>"], "uses": ["pkt:java", "pkt:lang", "cl:Object", "def:<init>"]},
{"sym": ["o:Dep1", "def:x"], "uses": ["o:Dep1", "t:x"]},
{"sym": ["o:Dep1", "def:x"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1", "def:y"], "uses": ["o:Dep1", "t:y"]},
{"sym": ["o:Dep1", "def:y"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1", "t:x"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1", "t:y"], "uses": ["o:Dep2", "def:z"]},
{"sym": ["o:Dep1", "t:y"], "uses": ["ov:Dep2"]},
{"sym": ["o:Dep1", "t:y"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep2"], "extends": ["pkt:scala", "tp:AnyRef"]},
{"sym": ["o:Dep2", "def:<init>"], "uses": ["o:Dep2"]},
{"sym": ["o:Dep2", "def:<init>"], "uses": ["pkt:java", "pkt:lang", "cl:Object", "def:<init>"]},
{"sym": ["o:Dep2", "def:z"], "uses": ["o:Dep2", "t:z"]},
{"sym": ["o:Dep2", "def:z"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep2", "t:z"], "uses": ["o:Dep1", "def:x"]},
{"sym": ["o:Dep2", "t:z"], "uses": ["ov:Dep1"]},
{"sym": ["o:Dep2", "t:z"], "uses": ["pkt:scala", "cl:Int"]}
]
Each line in the JSON file represents an edge between two symbols in a dependency graph.
The edges are of two types, extends
and uses
.
Each symbol is represented in the JSON as an array of strings, where each string represents a part of the symbol's fully qualified name.
So for example, in the above source code, we see that Dep1
extends
scala.AnyRef
:
{"sym": ["o:Dep1"], "extends": ["pkt:scala", "tp:AnyRef"]},
And we see that Dep1
uses scala.Int
in three places:
{"sym": ["o:Dep1", "def:x"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1", "def:y"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1", "t:x"], "uses": ["pkt:scala", "cl:Int"]},
from this we see that scala.Int
is used as the return type of
Dep1.x
and Dep1.y
, and as the inferred type of the body of
Dep1.y
.
For brevity, the following abbreviations are used in the JSON output:
abbreviation | meaning |
---|---|
ov | object |
def | def |
var | var |
mac | macro |
pk | package |
t | other term |
abbreviation | meaning |
---|---|
tr | trait |
pkt | package |
o | object |
cl | class |
tp | other type |
The name of a constructor is always <init>
.
The dependency information produced by the default mode is extremely fine-grained; it goes all the way down to the level of individual methods.
If you prefer an aggregated higher-level summary, you can run Sculpt
in "class mode" by adding -P:sculpt:mode=class
. So e.g. a complete
invocation would look like:
scalac -Xplugin:scala-sculpt_2.13-0.1.4.jar \
-Xplugin-require:sculpt \
-P:sculpt:out=classes.json \
-P:sculpt:mode=class \
Dep.scala
on the same source code used in the example above, this command line
generates this classes.json
file:
[
{"sym": ["o:Dep1"], "uses": ["o:Dep2"]},
{"sym": ["o:Dep1"], "uses": ["pkt:java", "pkt:lang", "cl:Object"]},
{"sym": ["o:Dep1"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep1"], "uses": ["pkt:scala", "tp:AnyRef"]},
{"sym": ["o:Dep2"], "uses": ["o:Dep1"]},
{"sym": ["o:Dep2"], "uses": ["pkt:java", "pkt:lang", "cl:Object"]},
{"sym": ["o:Dep2"], "uses": ["pkt:scala", "cl:Int"]},
{"sym": ["o:Dep2"], "uses": ["pkt:scala", "tp:AnyRef"]}
]
Note that all of the nodes are top-level classes, traits, objects, or type aliases, and all of the edges are of type "uses".
-P:sculpt:mode=class
is provided as a convenience, but it isn't
strictly needed, in that if you have already run Sculpt in default
mode, you can convert detailed dependencies to class-level
dependencies in the course of an interactive session. This
is demonstrated in the sample interactive session below.
The same JAR that contains the plugin also contains a suite of case classes for representing the same information in the JSON files as Scala objects.
We provide a load
method for parsing a JSON file into instances
of these case classes, and a save
method for writing the instances
back out to JSON.
These classes provide a possible starting point for graph analysis and manipulation, e.g. in the REPL.
Now in a Scala REPL with the same JARs on the classpath:
scala -classpath scala-sculpt_2.13-0.1.4.jar
If we load dep.json
as follows, we'll see the following graph:
scala> import com.lightbend.tools.sculpt.cmd._
import com.lightbend.tools.sculpt.cmd._
scala> load("dep.json")
res0: com.lightbend.tools.sculpt.model.Graph = Graph 'dep.json': 15 nodes, 19 edges
scala> println(res0.fullString)
Graph 'dep.json': 15 nodes, 19 edges
Nodes:
- o:Dep1
- pkt:scala.tp:AnyRef
...
Edges:
- o:Dep1 -[Extends]-> pkt:scala.tp:AnyRef
- o:Dep1.def:<init> -[Uses]-> o:Dep1
...
If we're interested in class-level dependencies only, we can
call load
with classMode = true
in order to aggregate the
dependencies after loading:
scala> load("dep.json", classMode = true)
res2: com.lightbend.tools.sculpt.model.Graph = Graph 'dep.json': 7 nodes, 10 edges
When untangling dependencies, circular dependencies are always especially problematic. We can identify these, list their contents, sort them by the total number of classes in the cycle, or print them grouped into layers according to their dependency structure.
The cycles and layers reports operate on class-level dependencies only, so you must either run the plugin in "class mode", or convert from default mode to class mode at load time:
Continuing the running example, here's a cycles report:
scala> import com.lightbend.tools.sculpt.model.Cycles
scala> println(Cycles.cyclesString(res2.nodes))
[2] o:Dep1 o:Dep2
The report shows that the codebase contains a single cycle of size 2,
because Dep1
and Dep2
mutually reference each other. ("Cycles" of
a single node are omitted.)
And here's the layers report for the same code:
scala> println(res2.layersString)
layers =
"""|[1] o:Dep1 o:Dep2
|[0] cl:java.lang.Object
|[0] cl:scala.Int
|[0] tp:scala.AnyRef
The numbers are layer numbers, defined as follows:
- layer 0: classes with no dependencies
- layer 1: classes with only layer 0 dependencies
- layer 2: classes with only layer 0 and 1 dependencies
- ...
Note that some concepts of layered architectures require that layer n accesses only layer n - 1 and not any lower layers; we are not making that assumption here.
Here's an example portion of a cycle report for a larger sample codebase:
[8] tr:api.Agent tr:api.AgentSet tr:api.Link tr:api.Observer tr:api.Patch tr:api.TrailDrawerInterface tr:api.Turtle tr:api.World
[5] cl:workspace.AbstractWorkspace cl:workspace.DefaultFileManager cl:workspace.Evaluator o:workspace.AbstractWorkspaceTraits o:workspace.Benchmarker
[4] cl:agent.HorizCylinder cl:agent.Torus cl:agent.VertCylinder o:agent.Topology
[3] cl:agent.AgentSet cl:agent.ArrayAgentSet o:agent.AgentSet
(The numbers are cycle sizes.)
And here's part of the layer report for the same codebase:
[14] o:org.nlogo.headless.Main
[14] o:org.nlogo.headless.Shell
[13] o:org.nlogo.compile.middle.FrontMiddleBridge
[13] o:org.nlogo.headless.HeadlessWorkspace
[13] o:org.nlogo.mirror.ModelRunIO
[12] o:org.nlogo.compile.back.BackEnd
[12] o:org.nlogo.compile.middle.MiddleEnd
showing just the topmost layers of the application.
We can explore the effect of removing edges from the graph using removePaths
:
scala> res0.removePaths("Dep2", "java.lang")
scala> println(res0.fullString)
Graph 'dep.json': 9 nodes, 8 edges
Nodes:
- o:Dep1
- pkt:scala.tp:AnyRef
- o:Dep1.def:<init>
- o:Dep1.def:x
- o:Dep1.t:x
- pkt:scala.cl:Int
- o:Dep1.def:y
- o:Dep1.t:y
- ov:Dep1
Edges:
- o:Dep1 -[Extends]-> pkt:scala.tp:AnyRef
- o:Dep1.def:<init> -[Uses]-> o:Dep1
- o:Dep1.def:x -[Uses]-> o:Dep1.t:x
- o:Dep1.def:x -[Uses]-> pkt:scala.cl:Int
- o:Dep1.def:y -[Uses]-> o:Dep1.t:y
- o:Dep1.def:y -[Uses]-> pkt:scala.cl:Int
- o:Dep1.t:x -[Uses]-> pkt:scala.cl:Int
- o:Dep1.t:y -[Uses]-> pkt:scala.cl:Int
Saving the graph back to a JSON model and loading it again:
scala> save(res0, "dep2.json")
scala> load("dep2.json")
res5: com.lightbend.tools.sculpt.model.Graph = Graph 'dep2.json': 8 nodes, 8 edges
scala> println(res5.fullString)
Graph 'dep2.json': 8 nodes, 8 edges
Nodes:
- o:Dep1
- pkt:scala.tp:AnyRef
- o:Dep1.def:<init>
- o:Dep1.def:x
- o:Dep1.t:x
- pkt:scala.cl:Int
- o:Dep1.def:y
- o:Dep1.t:y
Edges:
- o:Dep1 -[Extends]-> pkt:scala.tp:AnyRef
- o:Dep1.def:<init> -[Uses]-> o:Dep1
- o:Dep1.def:x -[Uses]-> o:Dep1.t:x
- o:Dep1.def:x -[Uses]-> pkt:scala.cl:Int
- o:Dep1.def:y -[Uses]-> o:Dep1.t:y
- o:Dep1.def:y -[Uses]-> pkt:scala.cl:Int
- o:Dep1.t:x -[Uses]-> pkt:scala.cl:Int
- o:Dep1.t:y -[Uses]-> pkt:scala.cl:Int
Possible future directions include:
- aggregation of dependency data at higher "zoom levels" (per-package, per-source-file)
- user interface (perhaps via IDE integration)
- automatic identification of problematic dependencies
- “what-if” analyses exploring the effect of proposed code changes
- offer a means of declaring and enforcing desired architectural constraints (allowed and forbidden dependencies)
There are tickets on some of these at https://github.com/lightbend/scala-sculpt/issues .