Releases: lightly-ai/lightly
Releases · lightly-ai/lightly
v1.5.6
Changes
- Allow lightly-serve to run securely via https by passing ssl_cert and ssl_key
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Add unpatchify model utils operation
Changes
- Add unpatchify model utils operation to reconstruct an image from its patches. See the PR for more information. Thanks to @randombenj for implementing this!
- Fixes in CI regarding coverage.
- Fixes in lightly-serve that the server was sometimes not shut down correctly.
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Multi-GPU
Changes
- Fixes the GatherLayer for multiple GPUs. See PR for more information.
- Different typos in tutorials
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
UX improvements
Changes
- Removed the hydra warning when using
lightly-serve
- Improved the error messages and formatting of "well known" errors to improve the readability
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Better docs for MAE and TIMM
Changes
- add benchmark results for MAE
- add timm version info to docs
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
MAE to use TIMM VIT
Changes
- Refactor MAE to use TIMM VIT
- Add AIM examples and docs
- Updated BYOL and MOCO benchmarks
- Use MMCRProjectionHead in examples
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
Schedule Lightly Worker jobs with config version v4
This release includes some breaking changes for users of Lightly Worker.
Breaking Changes
- Jobs are now scheduled with config v4 and require Lightly Worker 2.11 (breaking).
Changes
- Add mmcr projection head (thanks @LukeSutor )
- Update argument type hints where the default is set to None to use Optional (thanks @otavioon)
- Fix TiCoLoss (thanks @guarin )
- Add timm version check
- fix parsing and caching issues with
lightly-serve
- allow to use lightly behind a proxy by setting
HTTPS_PROXY
andLIGHTLY_CA_CERTS
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
AIM Model and EMP-SSL Loss
Changes
- Add EMP-SSL Loss (thanks @johnsutor).
- Add AIM Model from Scalable Pre-training of Large Autoregressive Image Models.
- Benchmark code is here.
- Documentation is coming soon!
- Add TiCo model code for ImageNet benchmark.
- Add examples and documentation for MMCR loss (thanks @johnsutor).
Models
- AIM: Scalable Pre-training of Large Autoregressive Image Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
W-MSE Loss and Transform
Changes
- Add MoCoV2 ImageNet benchmarks.
- Make KNN feature normalization optional.
- Implement W-MSE Loss and Transform (thanks @johnsutor).
- Update generated specs with datasource expiration.
Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022
MMCR
Changes
- Add MMCR loss and transform in #1446. Thanks to @johnsutor!
- Update README to reflect correct import for LightlyDataset in #1437. Thanks to @dnth!
- Fix MoCoV2 transform parameters in #1441
- Set model to eval for benchmark knn and linear classification in #1444
- Remove extra mean calculation in VICRegLoss in #1450. Thanks to @RylanSchaeffer for pointing out the issue!
- Fix MultiCropTransform crop_max_scales check in #1454. Thanks to @Djoels for pointing out the issue!
Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU, 2022
- I-JEPA: Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture, 2023
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- PMSN: Prior Matching for Siamese Networks, 2022
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022