-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset3Params.m
executable file
·52 lines (38 loc) · 1.49 KB
/
dataset3Params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.1;
param = [0.01 , 0.03, 0.1, 0.3, 1, 3, 10, 30];
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
minError = 10000.0;
%for CVal = param,
% for sigmaVal = param,
% model = svmTrain(X, y, CVal, @(x1, x2) gaussianKernel(x1, x2, sigmaVal));
% predictions = svmPredict(model , Xval);
% error = mean(double(predictions ~= yval));
% if minError > error,
% minError = error;
% C = CVal;
% sigma = sigmaVal;
% end
% end
%end
% =========================================================================
end