-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_bandit.py
1058 lines (934 loc) · 50.8 KB
/
train_bandit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import absolute_import, division, print_function
import argparse
import collections
import json
import logging
import os
import random
import time
from io import open
import datetime
from tqdm import trange
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
from transformers import BertTokenizer, DebertaTokenizerFast, DebertaV2TokenizerFast, AutoTokenizer
from transformers import AdamW
from model import BertForQuestionAnsweringSequence, BertForQuestionAnswering, DebertaSQuAD2
from transformers import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup
from datasets import load_dataset
import wandb
from prettytable import PrettyTable
from src.eval import evaluate
from src.data import get_feedback_data, get_nq_data, get_tydi_data, read_feedback_examples_and_features, read_squad_examples_and_features, read_tydi_examples_and_features, get_mrqa_data, read_mrqa_examples_and_features
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
PRED_FILE = "predictions-train.json"
EVAL_FILE = "eval_results.txt"
TEST_FILE = "test_results.txt"
CSV_FILE = "results_sheet_test_all.tsv"
PLOT_CSV_FILE = "plot_per_round.tsv"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def turn_off_dropout(m):
for mod in m.modules():
if isinstance(mod, torch.nn.Dropout):
mod.p = 0
def load_initialization(model, args):
ckpt = torch.load(args.initialize_model_from_checkpoint + '/' + args.checkpoint_name)
assert args.model == ckpt['args']['model'], args.model + ' vs ' + ckpt['args']['model']
model.load_state_dict(ckpt['model_state_dict'])
logger.info("***** Model Initialization *****")
logger.info("Loaded the model state from a saved checkpoint {}".format(
args.initialize_model_from_checkpoint))
def get_log_probs(start_probs, end_probs, start_positions, end_positions, args,
device):
start_samples, end_samples = start_positions, end_positions
ignored_index = start_probs.size(1)
start_samples.clamp_(0, ignored_index)
end_samples.clamp_(0, ignored_index)
bs = start_samples.shape[0]
log_probs = start_probs[torch.arange(bs), start_samples].log() + end_probs[torch.arange(bs),
end_samples].log()
return log_probs
def collect_rewards_offline(model, train_batches, args, device, tokenizer, n_gpu, is_initial=False):
total_pos = 0
total_neg = 0
for i in trange(len(train_batches)):
batch = train_batches[i]
batch = tuple(t.to(device) for t in batch)
if args.load_log_prob:
input_ids, input_mask, segment_ids, start_samples, end_samples, class_samples, log_probs, class_log_probs, rewards, class_rewards = batch
else:
input_ids, input_mask, segment_ids, start_samples, end_samples, class_samples, rewards, class_rewards = batch
if is_initial:
log_probs = torch.zeros(rewards.size()).to(device)
class_log_probs = torch.zeros(rewards.size()).to(device)
else:
with torch.no_grad():
start_probs, end_probs, class_probs = model(batch=batch[:3], return_prob=True)
log_probs = get_log_probs(start_probs, end_probs, start_samples,
end_samples, args, device)
if args.add_classifier:
class_log_probs = class_probs[torch.arange(bs), class_samples].log()
else:
class_log_probs = None
train_batches[i] = [
input_ids, input_mask, segment_ids, start_samples, end_samples, class_samples, log_probs, class_log_probs, rewards, class_rewards
]
count_pos = torch.sum(rewards > 0).item()
total_pos += count_pos
total_neg += input_ids.shape[0] - count_pos
return train_batches, total_pos, total_neg
def prepare_data(args, filename, tokenizer, data_type, batch_size, data_split='train'):
if data_type == 'feedback':
logger.info('loading feedback data (%s)...' % (data_split))
dataset = get_feedback_data(filename)
examples, features = read_feedback_examples_and_features(dataset,
args.negative_reward,
args.partial_reward,
args.reward_wrong_unans,
args.reward_correct_span,
args.reward_correct_unans,
args.reward_class_wrong,
args.reward_class_correct_ans,
tokenizer,
args.max_seq_length,
args.prepend_title,
load_log_prob=args.load_log_prob
and data_split == 'train')
elif data_type == 'tydi':
logger.info('loading from tydi..., is_training = %s' % (str((data_split == 'train'))))
dataset = get_tydi_data(filename)
examples, features = read_tydi_examples_and_features(
input_data=dataset,
is_training=(data_split == 'train'),
version_2_with_negative=args.version_2_with_negative,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title)
elif data_type == 'squad':
logger.info('loading from squad..., is_training = %s' % (str((data_split == 'train'))))
input_data = load_dataset("squad")
is_training = (data_split == 'train')
if is_training:
input_data = input_data['train']
else:
input_data = input_data['validation']
examples, dataset, features = read_squad_examples_and_features(
is_training=(data_split == 'train'),
version_2_with_negative=False,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title,
input_data=input_data,
)
elif data_type == 'squad2':
logger.info('loading from squad_v2..., is_training = %s' % (str((data_split == 'train'))))
input_data = load_dataset("squad_v2")
is_training = (data_split == 'train')
if is_training:
input_data = input_data['train']
else:
input_data = input_data['validation']
examples, dataset, features = read_squad_examples_and_features(
is_training=(data_split == 'train'),
version_2_with_negative=True,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title,
input_data=input_data)
elif data_type == 'nq':
logger.info('loading from NQ..., is_training = %s' % (str((data_split == 'train'))))
dataset = get_nq_data(filename)
assert data_split != 'train'
examples, _, features = read_squad_examples_and_features(
is_training=(data_split == 'train'),
version_2_with_negative=False,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title,
get_dataset=False,
input_data=dataset)
elif data_type == 'tydi+squad':
assert (data_split == 'train')
dataset = get_tydi_data(filename)
examples, features = read_tydi_examples_and_features(
input_data=dataset,
is_training=True,
version_2_with_negative=args.version_2_with_negative,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title)
squad_examples, _, squad_features = read_squad_examples_and_features(
is_training=True,
version_2_with_negative=False,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title)
random_indices = [int(l.strip('\n')) for l in open('random_indices_squad.txt')]
squad_examples = [squad_examples[i] for i in random_indices]
squad_features = [squad_features[i] for i in random_indices]
# add SQuAD examples
examples += squad_examples[:len(examples)]
features += squad_features[:len(features)]
elif data_type == 'newsqa' or data_type == 'searchqa' or data_type == 'triviaqa':
logger.info('loading from mrqa...')
dataset = get_mrqa_data(filename)
examples, dataset, features = read_mrqa_examples_and_features(
input_data=dataset,
is_training=(data_split == 'train'),
version_2_with_negative=False,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
prepend_title=args.prepend_title,
get_dataset=True
)
# shuffle the data
if data_split == 'train':
if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
features = sorted(features, key=lambda f: np.sum(f.input_mask))
else:
random.shuffle(features)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
if data_split == 'train':
all_start_samples = torch.tensor([f.start_sample for f in features], dtype=torch.long)
all_end_samples = torch.tensor([f.end_sample for f in features], dtype=torch.long)
all_class_samples = torch.tensor([f.class_sample for f in features], dtype=torch.long)
all_rewards = torch.tensor([f.reward for f in features], dtype=torch.float)
all_class_rewards = torch.tensor([f.class_reward for f in features], dtype=torch.float)
if args.load_log_prob:
all_log_probs = torch.tensor([f.log_prob for f in features], dtype=torch.float)
all_class_log_probs = torch.tensor([f.class_log_prob for f in features], dtype=torch.float)
data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_samples,
all_end_samples, all_class_samples, all_log_probs, all_class_log_probs, all_rewards, all_class_rewards)
else:
data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_samples,
all_end_samples, all_class_samples, all_rewards, all_class_rewards)
logger.info("***** Train *****")
logger.info(" Num examples = %d", len(features))
logger.info(" Batch size = %d", batch_size)
else:
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
logger.info("***** %s *****" % (data_split))
logger.info(" Num orig examples = %d", len(examples))
logger.info(" Num split examples = %d", len(features))
logger.info(" Batch size = %d", batch_size)
dataloader = DataLoader(data, batch_size=batch_size)
batches = [batch for batch in dataloader]
return dataset, examples, features, dataloader, batches
def fetch_batch_data(step, train_batches):
if step % len(train_batches) == 0:
logger.info("shuffling previous data...")
random.shuffle(train_batches)
return train_batches[step % len(train_batches)]
def main(args):
# create timestamp: folder name, wandb logging
args.timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
# GPU
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
# random seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# argparse checkers
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if args.do_train:
assert (args.train_file is not None) and (args.dev_file is not None)
if args.eval_test:
assert args.test_file is not None
else:
assert args.dev_file is not None
# only evaluate on the test set: need an initialization
# if args.eval_test and not args.do_train:
# assert args.initialize_model_from_checkpoint is not None
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.do_train:
# set up the logging for this experiment: create a folder named by hyperparameters
# also, during eval, the folder need not be created again
# we use the same folder for storing eval results
# set up the logging for this experiment: create a folder named by the timestamp
model_name = args.model.split('/')[-1]
args.output_dir += '/' + f'round{args.round_index}/rehearsal_round{args.round_index}_{model_name}_{args.scheduler}_{args.learning_rate}_b{args.train_batch_size}_acc{args.gradient_accumulation_steps}_ep{args.num_train_epochs}_nr{args.negative_reward}_pr{args.partial_reward}_rcu{args.reward_correct_unans}/{args.timestamp}'
os.makedirs(args.output_dir)
# args.output_dir += '/test'
if args.do_train:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "train.log"), 'w'))
else:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "eval.log"), 'w'))
logger.info(args)
if args.model == "deepset/deberta-v3-base-squad2":
tokenizer = AutoTokenizer.from_pretrained(args.model, return_offsets_mapping=True)
elif args.model == 'microsoft/deberta-v3-base':
tokenizer = DebertaV2TokenizerFast.from_pretrained(args.model, return_offsets_mapping=True)
else:
raise ValueError('Model type!')
if args.do_train:
# multiple dataloaders (current round, all previous rounds, initial data)
all_train_batches = []
# for training
########## Data Preparation Begins ########
file_list = [l.strip('\n') for l in open(args.train_file)]
print('file len = %d' % len(file_list))
# handle batch size in different batch
if args.rehearsal:
count = len(file_list)
train_batch_sizes = [int(args.train_batch_size / count)] * count
else:
train_batch_sizes = [args.train_batch_size]
print(args.train_batch_size, train_batch_sizes)
assert sum(train_batch_sizes) == args.train_batch_size
initial_train_dataloader = None
for i, file_ in enumerate(file_list):
_, _, train_features, train_dataloader, train_batches = prepare_data(args=args,
filename=file_,
tokenizer=tokenizer,
data_type='feedback',
batch_size=train_batch_sizes[i],
data_split='train')
if i == 0:
logger.info('Reading Current Data From %s' % file_)
initial_train_dataloader = train_dataloader
else:
logger.info('Reading Previous Data From %s' % file_)
all_train_batches.append(train_batches)
num_train_optimization_steps = (len(initial_train_dataloader) //
args.gradient_accumulation_steps) * args.num_train_epochs
logger.info(" Num steps = %d | len current round: %d" %
(num_train_optimization_steps, len(all_train_batches[0])))
# validation dataset
eval_dataset, eval_examples, eval_features, eval_dataloader, _ = prepare_data(
args=args,
filename=args.dev_file,
tokenizer=tokenizer,
data_type=args.valid_data_type,
batch_size=args.eval_batch_size,
data_split='valid')
########## Data Preparation Ends ########
assert len(all_train_batches) == len(train_batch_sizes)
eval_step = max(1, len(all_train_batches[0]) // args.eval_per_epoch)
logger.info('Time_Stamp %s ' % args.timestamp + 'eval step: %d' % eval_step)
# NOTE only tested for one learning rate
assert args.learning_rate
lr = args.learning_rate
if args.model == "deepset/deberta-v3-base-squad2":
model = DebertaSQuAD2(model_type=args.model)
print('loading deepset model')
else:
if args.add_classifier:
model = BertForQuestionAnsweringSequence(model_type=args.model)
else:
model = BertForQuestionAnswering(model_type=args.model)
# initial from pretraining # initialize model; no matter training or test
if args.initialize_model_from_checkpoint:
load_initialization(model, args)
if args.turn_off_dropout:
turn_off_dropout(model)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# for setting up loss visualization
if args.wandb:
wandb.init(
project="",
entity='',
name=
f'round{args.round_index}_{args.model}_{args.scheduler}={lr}_b{args.train_batch_size}_ep{args.num_train_epochs}_nr{args.negative_reward}_pr{args.partial_reward}/{args.timestamp}',
notes=args.notes,
config=vars(args),
tags=[
args.tag, 'main experiment - classifier', '200-ex',
'round %d' % args.round_index,
'w/ rehearsal' if args.rehearsal else 'w/o rehearsal',
':'.join([str(l) for l in train_batch_sizes]), 'max_answer_length=30',
'squad2.0 - 512 initial',
'correct_unans=%f' % args.reward_correct_unans, 'hyperparameter', args.timestamp, '30% unans', 'class_coeff=%2.2f'%(args.class_coeff),
'entropy_coeff=%2.2f'%(args.entropy_coeff), 'main_task', 'reward_class_wrong=%2.2f'%(args.reward_class_wrong)
])
wandb.watch(model)
file_list = [l.strip('\n') for l in open(args.train_file)]
for f_ in file_list:
logger.info("reading from file: %s" % f_)
param_optimizer = list(model.named_parameters())
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay':
0.01
}, {
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
lr_scheduler = get_scheduler(args.scheduler,
optimizer=optimizer,
num_warmup_steps=int(num_train_optimization_steps *
args.warmup_proportion),
num_training_steps=num_train_optimization_steps)
# for offline training
if args.setup == 'offline':
for i in range(len(all_train_batches)): # collect reward for each dataloader
all_train_batches[i], total_pos, total_neg = collect_rewards_offline(
model, all_train_batches[i], args, device, tokenizer, n_gpu)
logger.info("Offline regret computation: {} positives {} negatives".format(
total_pos, total_neg))
# start training
best_result = None
tr_loss = 0
nb_tr_steps = 0
num_train_batches = 0
global_step = 0
max_valid_reward = 0
max_valid_f1 = 0
max_valid_em = 0
start_time = time.time()
simulation_log = None
one_epoch_f1 = None
for epoch in range(int(args.num_train_epochs)):
rewards_per_epoch = []
class_rewards_per_epoch = []
acc_per_epoch = 0
model.train()
logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
if args.train_mode == 'random' or args.train_mode == 'random_sorted':
logger.info("shuffling the main training batches")
random.shuffle(all_train_batches[0])
for step, initial_batch in enumerate(all_train_batches[0]):
# prepare batch for rehearsal
# use the main (current round) training set to keep track of num_training_epochs
sizes = [initial_batch[0].size(0)]
all_batches = [[t] for t in initial_batch]
for loader_index in range(1, len(all_train_batches)):
# fetch data from dataloader
partial_batch = fetch_batch_data(num_train_batches,
all_train_batches[loader_index])
assert (len(initial_batch) == len(partial_batch)) and (len(all_batches)
== len(partial_batch))
sizes.append(partial_batch[0].size(0))
# add data from loader to the current batch
for j in range(len(partial_batch)):
all_batches[j].append(partial_batch[j])
batch = [torch.cat(all_batches[j], dim=0) for j in range(len(all_batches))]
batch = tuple(t.to(device) for t in batch)
num_train_batches += 1
########## do Bandit Learning #########
start_probs, end_probs, class_probs = model(batch=batch[:3], return_prob=True, classifier=args.add_classifier)
bs = start_probs.shape[0]
if args.setup == 'online': # should not use online
input_ids, _, _, start_samples, end_samples, rewards = batch
start_samples, end_samples, log_prob, rewards = get_batch_rewards(
start_probs, end_probs, start_samples, end_samples, rewards, args, device)
count_pos = torch.sum(rewards > 0).item()
total_pos += count_pos
total_neg += bs - count_pos
else:
input_ids, _, _, start_samples, end_samples, class_samples, old_log_probs, old_class_log_probs, old_rewards, old_class_rewards = batch
ignored_index = start_probs.size(1)
start_samples.clamp_(0, ignored_index)
end_samples.clamp_(0, ignored_index)
log_probs = start_probs[torch.arange(bs),
start_samples].log() + end_probs[torch.arange(bs),
end_samples].log()
ratios = torch.exp(log_probs - old_log_probs)
rewards = torch.clamp(ratios, 0, 1) * old_rewards
rewards = rewards.detach()
if args.add_classifier:
class_log_probs = class_probs[torch.arange(bs), class_samples].log()
class_ratios = torch.exp(class_log_probs - old_class_log_probs)
class_rewards = torch.clamp(class_ratios, 0, 1) * old_class_rewards
class_rewards = class_rewards.detach()
class_pred = class_probs.argmax(dim=-1)
acc = ((class_samples == class_pred) == (old_class_rewards > 0)).long().sum()
# print('acc', acc)
acc_per_epoch += acc
rewards_per_epoch.append(rewards.mean().item())
if args.add_classifier:
class_rewards_per_epoch.append(class_rewards.mean().item())
########## Update Model ###########
detached_advantages = rewards
loss = (-log_probs * detached_advantages) / 2
if args.add_classifier:
class_detached_advantages = class_rewards
class_loss = (-class_log_probs * class_detached_advantages)
classifier_entropy = torch.mean(torch.sum(-class_probs * class_probs.log(), dim=-1))
loss = loss + args.class_coeff * class_loss - args.entropy_coeff * classifier_entropy
else:
class_loss = torch.zeros((1,))
classifier_entropy = torch.zeros((1,))
loss = loss.mean()
if n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_steps += 1
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
global_step += 1
if args.wandb and (global_step + 1) % 5 == 0:
wandb.log(
{
'(Train) batch policy loss': loss.item(),
'(Train) Span loss': (-log_probs * detached_advantages / 2).mean().item(),
'(Train) classification loss': class_loss.mean().item(),
'(Train) batch advantage': detached_advantages.mean().item(),
'IPS ratios':
torch.clamp(ratios, 0, 1).mean().item(),
'(Train) cls entropy': classifier_entropy.item(),
},
step=global_step)
if args.add_classifier:
wandb.log(
{
'(Train) batch classification advantage': class_detached_advantages.mean().item(),
'(Train) batch class advantage':
((class_detached_advantages).sum() / class_detached_advantages.size(0)).item(),
'(Train) class_log_probs':
class_log_probs.mean().item(),
'IPS ratios of classification':
torch.clamp(class_ratios, 0, 1).mean().item(),
}, step=global_step)
if simulation_log is not None:
wandb.log(simulation_log, step=global_step)
if step != 0 and (step) % eval_step == 0:
## record training related info
logger.info(
'Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'.format(
epoch, step + 1, len(all_train_batches[0]),
time.time() - start_time, tr_loss / (nb_tr_steps+1)))
tr_loss = 0
nb_tr_steps = 0
save_model = False
######## validation ########
if args.do_eval:
result, has_ans_eval, no_ans_eval, _ = \
evaluate(args, model, device, eval_dataset,
eval_dataloader, eval_examples, eval_features,
args.na_prob_thresh, tokenizer, args.valid_data_type,
calculate_score=True, classifier=args.add_classifier)
model.train()
result['global_step'] = global_step
result['epoch'] = epoch
result['learning_rate'] = lr
result['batch_size'] = args.train_batch_size
if global_step > 1 and ((best_result is None) or (result[args.eval_metric] >
best_result[args.eval_metric])):
best_result = result
save_model = True
logger.info(
"!!! Best dev %s (lr=%s, epoch=%d): %.2f" %
(args.eval_metric, str(lr), epoch, result[args.eval_metric]))
# record max f1, em, reward
max_valid_em = max(max_valid_em, result['exact'])
max_valid_f1 = max(max_valid_f1, result['f1'])
if args.valid_data_type == 'feedback':
max_valid_reward = max(max_valid_reward, result['reward'])
if args.wandb:
## record F1, EM for both feedback and TyDi/SQuAD data
logger.info('log valid...')
wandb.log(
{
'(Valid) F1':
result['f1'],
'(Valid) Exact':
result['exact'],
'(Valid) Has Ans F1':
has_ans_eval['f1'],
'(Valid) Has Ans Exact':
has_ans_eval['exact'],
'(Valid) No Ans F1':
no_ans_eval['f1'],
'(Valid) No Ans Exact':
no_ans_eval['exact'],
'(Valid) Max F1':
max_valid_f1,
'(Valid) Max Exact':
max_valid_em,
'(Valid) Max Reward':
max_valid_reward,
'(Valid) Reward':
result['reward'],
'(Valid) perc. UNANS':
result['perc. UNANS'],
'perc. UNANS in ANS subset':
result['perc. UNANS in ANS subset'],
'perc. UNANS in UNANS subset':
result['perc. UNANS in UNANS subset'],
'F1 in predicted ANS subset':
result['F1 in predicted ANS subset'],
'F1 in predicted UNANS subset':
result['F1 in predicted UNANS subset'],
'classification_acc':
result['classification_acc'],
},
step=global_step)
if args.valid_data_type == 'feedback': # validation on feedback
wandb.log({
'(Valid) Reward': result['reward'],
}, step=global_step)
else:
save_model = True
######## validation ########
if args.save_every:
save_model = True
if global_step == 0:
save_model = False
#### model saving ####
if save_model and (not args.not_save):
logger.info('=====Saving!!!!=====')
# save the config; handle multi-gpu
if n_gpu > 1:
model.module.bert.config.to_json_file(
os.path.join(args.output_dir, 'config.json'))
else:
model.bert.config.to_json_file(
os.path.join(args.output_dir, 'config.json'))
# save the model
ckpt_name = 'saved_checkpoint_%d' % epoch if args.save_every else 'saved_checkpoint'
torch.save(
{
'global_step':
global_step,
'args':
vars(args),
'model_state_dict':
model.module.state_dict()
if n_gpu > 1 else model.state_dict(), # handle multi-gpu
'optimizer_state_dict':
optimizer.state_dict(),
},
os.path.join(args.output_dir, ckpt_name))
if best_result:
# i.e. best_result is not None
filename = EVAL_FILE
with open(os.path.join(args.output_dir, filename), "w") as writer:
for key in sorted(best_result.keys()):
writer.write("%s = %s\n" % (key, str(best_result[key])))
if epoch == 0 and args.eval_metric == 'f1':
one_epoch_f1 = best_result['f1']
writer.write("%s = %s\n" % ('one_epoch_f1', one_epoch_f1))
#### model saving ####
## training reward
logger.info('(Train) Weighted Reward Per Epoch = %f' %
(sum(rewards_per_epoch) / len(rewards_per_epoch)))
if args.add_classifier:
logger.info('(Train) Weighted Class Reward Per Epoch = %f' %
(sum(class_rewards_per_epoch) / len(class_rewards_per_epoch)))
if args.wandb:
wandb.log(
{
'(Train) Weighted Reward Per Epoch':
sum(rewards_per_epoch) / len(rewards_per_epoch),
},
step=global_step)
print('ACC PER EPOCH:', acc_per_epoch)
# that's for testing
if args.do_eval:
if args.eval_test:
table = PrettyTable()
plot_writer = open(os.path.join(args.output_dir, PLOT_CSV_FILE), "w")
csv_writer = open(os.path.join(args.output_dir, CSV_FILE), "w")
csv_writer.write('\t')
for _ in range(2):
csv_writer.write(
"F1 \t has ans F1 \t no ans F1 \t EM \t reward \t % unans \t F1 in predicted ANS subset \t"
)
for _ in range(2):
csv_writer.write(
"F1 \t has ans F1 \t no ans F1 \t EM \t % unans \t F1 in predicted ANS subset \t"
)
csv_writer.write("F1 \t EM \n")
csv_writer.write('round %d\t' % args.round_index)
# look at data/test_files.txt
# should be [data_type]\t[data_path]
test_data_list = [tuple(l.strip('\n').split('\t')) for l in open(args.test_file)]
for test_data_type, test_data_file in test_data_list:
eval_dataset, eval_examples, eval_features, eval_dataloader, _ = prepare_data(
args,
test_data_file,
tokenizer,
data_type=test_data_type,
batch_size=args.eval_batch_size,
data_split='test')
# NOTE old: model = BertForQuestionAnsweringSequence.from_pretrained(args.output_dir)
# model = BertForQuestionAnsweringSequence(model_type=args.model)
# NOTE change: only evaluate on the test set
if not args.do_train:
if args.model == "deepset/deberta-v3-base-squad2":
model = DebertaSQuAD2(model_type=args.model)
print('loading deepset model')
if args.initialize_model_from_checkpoint:
load_initialization(model=model, args=args)
else:
if args.add_classifier:
model = BertForQuestionAnsweringSequence(model_type=args.model)
else:
model = BertForQuestionAnswering(model_type=args.model)
load_initialization(model=model, args=args)
model.to(device)
logger.info('output_dir: %s' % args.output_dir)
na_prob_thresh = args.na_prob_thresh
if args.version_2_with_negative:
eval_result_file = os.path.join(args.output_dir, "eval_results.txt")
if os.path.isfile(eval_result_file):
with open(eval_result_file) as f:
for line in f.readlines():
if line.startswith('best_f1_thresh'):
na_prob_thresh = float(line.strip().split()[-1])
logger.info("na_prob_thresh = %.6f" % na_prob_thresh)
result, _, _, preds = \
evaluate(args, model, device, eval_dataset,
eval_dataloader, eval_examples, eval_features,
na_prob_thresh=na_prob_thresh,
tokenizer=tokenizer,
dataset_name=test_data_type,
calculate_score=not args.not_calculate_score,
classifier=args.add_classifier
)
with open(
os.path.join(
args.output_dir,
PRED_FILE.split('.')[0] + '-%s.' % test_data_type +
PRED_FILE.split('.')[1]), "w") as writer:
writer.write(json.dumps(preds, indent=4) + "\n")
if not args.not_calculate_score:
with open(os.path.join(args.output_dir, TEST_FILE), "w") as writer:
for key in sorted(result.keys()):
writer.write("%s = %s\n" % (key, str(result[key])))
table.add_column("[%s] %s" % (test_data_type, "F1"), ['%2.2f' % result['f1']])
table.add_column("[%s] %s" % (test_data_type, "EM"),
['%2.2f' % result['exact']])
print(test_data_type)
print(result)
if 'NoAns_f1' in result:
csv_writer.write("%2.2f\t%2.2f\t%2.2f\t%2.2f\t" %
(result['f1'], result['HasAns_f1'], result['NoAns_f1'],
result['exact']))
else:
assert test_data_type == 'squad', 'only squad should be without NoAns_f1!'
csv_writer.write("%2.2f\t%2.2f\t" % (result['f1'], result['exact']))
if 'reward' in result:
csv_writer.write("%2.2f\t" % (result['reward']))
table.add_column("[%s] %s" % (test_data_type, "Reward"),
['%2.2f' % result['reward']])
if 'classification_acc' in result:
csv_writer.write("%2.2f\t" % (result['classification_acc']))
if 'perc. UNANS' in result:
csv_writer.write("%2.2f\t" % (100*result['perc. UNANS']))
if 'F1 in predicted ANS subset' in result:
csv_writer.write("%2.2f\t" % (100*result['F1 in predicted ANS subset']))
if test_data_type == 'feedback' or test_data_type == 'tydi' or test_data_type == 'squad2':
plot_writer.write(test_data_file + '\t')
plot_writer.write("%2.2f\t%2.2f\t%2.2f\t"%(result['f1'], result['HasAns_f1'], result['NoAns_f1']))
plot_writer.write("%2.2f\t%2.2f\t%2.2f\t"%(100*result['F1 in predicted ANS subset'], 100*result['F1 in predicted UNANS subset'], result['classification_acc']))
plot_writer.write("%2.2f\t%2.2f\t%2.2f\t"%(100*result['perc. UNANS'], 100*result['perc. UNANS in ANS subset'], 100*result['perc. UNANS in UNANS subset']))
plot_writer.write('\n')
# Round F1 Ans F1 Unans F1 Predicted Ans F1 Predicted Unans F1 CLS Acc %unans %unans|an %unans|un
print(table)
csv_writer.write('\n')
csv_writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='microsoft/deberta-v3-base', type=str, required=True)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.")
parser.add_argument("--train_file",
default='',
type=str,
help="text file containing the data from current round and data from all previous rounds")
parser.add_argument("--initial_train_file",
default='data/tydiqa-v1.0-train-90%.jsonl.gz',
type=str,
help="Initial TyDi File for training")
parser.add_argument("--dev_file",
default='data/tydiqa-v1.0-train-10%.jsonl.gz',
type=str,
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
parser.add_argument("--test_file", default=None, type=str)
parser.add_argument("--eval_per_epoch",
default=4,
type=int,
help="How many times it evaluates on dev set per epoch")
parser.add_argument(
"--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--doc_stride",
default=512,
type=int,
help="When splitting up a long document into chunks, "
"how much stride to take between chunks.")
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--eval_test",
action='store_true',
help='Wehther to run eval on the test set.')
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for predictions.")
parser.add_argument("--learning_rate",
default=None,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--eval_metric", default='f1', type=str)
parser.add_argument("--train_mode",
type=str,
default='random',
choices=['random', 'sorted', 'random_sorted'])
parser.add_argument(
"--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
"of training.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json "
"output file.")
parser.add_argument("--max_answer_length",
default=30,
type=int,
help="The maximum length of an answer that can be generated. "
"This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument(
"--verbose_logging",
action='store_true',
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--turn_off_dropout", action='store_true', help="Whether turn off dropout")
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument(
'--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--scheduler', default='linear', type=str, help='Learning rate scheduler.')
parser.add_argument('--initialize_model_from_checkpoint',
default=None,
help='Relative filepath to a saved checkpoint as model initialization.')
parser.add_argument('--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
#### for bandit learning ####
parser.add_argument('--wandb', action='store_true', help='Whether to use wandb for logging.')
parser.add_argument('--notes', default='', help='Notes for this experiment: wandb logging')
parser.add_argument(
'--reward_fn',
default='binary_reward',
type=str,
choices=['binary_reward'],
help='the type of reward function used during training: stick with binary in this work')
parser.add_argument('--negative_reward',
default=-0.1,
type=float,
help='value for negative update')
parser.add_argument('--partial_reward',
default=0.5,
type=float,
help='value for negative update')
parser.add_argument('--reward_wrong_unans',
default=-1,
type=float,