Skip to content

A package to generate summaries of long-form text and evaluate the coherence of these summaries. Official package for our ICLR 2024 paper, "BooookScore: A systematic exploration of book-length summarization in the era of LLMs".

License

Notifications You must be signed in to change notification settings

lilakk/BooookScore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

made-with-python arxiv

This repository hosts the official code and data release for our ICLR 2024 paper, BooookScore: A systematic exploration of book-length summarization in the era of LLMs. There are 4 O's 😁

If you find BooookScore useful, please cite:

@inproceedings{
    chang2024booookscore,
    title={BooookScore: A systematic exploration of book-length summarization in the era of {LLM}s},
    author={Yapei Chang and Kyle Lo and Tanya Goyal and Mohit Iyyer},
    booktitle={The Twelfth International Conference on Learning Representations},
    year={2024},
    url={https://arxiv.org/pdf/2310.00785.pdf}
}

Also, if you're interested in faithfulness evaluation in book-length summarization, check out our follow-up work: FABLES: Evaluating faithfulness and content selection in book-length summarization (paper | repo)!

Some TODO's for future updates are at the end of this README. We also welcome open-source contributions 🥰

📢 Announcements

  • 2024/09/03 Added a Google form link for requesting the BooookScore dataset.
  • 2024/04/01 BooookScore is now available as a Python package!
  • 2024/02/27 We now have BooookScore v2, a version that batches sentences when obtaining model-generated annotations for summaries. Kudos to @IlyaGusev for implementing this!
  • 2023/10/10 Initial data release: all summaries, GPT-4 annotations, and human annotations.

💿 Requesting a copy of the dataset

If you are interested in getting a copy of the BooookScore dataset, please fill out this form. Note that we can only release the dataset to academic labs.

⬇️ Install BooookScore

pip install booookscore

🤩 Using BooookScore

Getting chunked data

Before running the chunking script, you need to have a pickle file containing a dictionary, where keys are book names and values are full texts of the books. Refer to data/example_all_books.pkl for an example. Once you have this file ready, run the following command to chunk the data:

python -m booookscore.chunk --chunk_size {chunk_size} 
    --input_path {input_path} --output_path {output_path}
  • --chunk_size: your desired chunk size (each chunk will not exceed this limit)
  • --input_path: should be set to the path storing the pickle file described above
  • --output_path: where to save the chunked data (pickle file)
  • --include_empty_lines (optional): if specified, it does not remove the empty lines that may exist in the input texts

Example usage:

python -m booookscore.chunk --chunk_size 2048 
    --input_path all_books.pkl --output_path all_books_chunked_2048.pkl

Obtain summaries

python -m booookscore.summ --book_path {book_path} --summ_path {summ_path} 
    --model {model} --api {api} --api_key {api_key} --method {method} --chunk_size {chunk_size} 
    --max_context_len {max_context_len} --max_summary_len {max_summary_len}
  • --book_path: the path to the chunked data (pickle file)
  • --summ_path: the path to save the generated summaries
  • --model: name of the model to use, must be supported by the API you're using
  • --api: which API to use, currently supports openai, anthropic, together
  • --api_key: the path to the txt file storing your API key
  • --method: the summarization method to use, "inc" for incremental updating, "hier" for hierarchical merging
  • --chunk_size: the desired size of each chunk of text, must be consistent with your data in book_path
  • max_context_len: the maximum context window of the model
  • max_summary_len: the maximum number of tokens a summary can have

Example usage (GPT 4):

python -m booookscore.summ --book_path all_books_chunked_4096.pkl 
    --summ_path summaries.json --model gpt-4 --api openai --api_key api_key.txt 
    --method hier --chunk_size 4096 --max_context_len 8192

Example usage (Claude 3 Opus):

python -m booookscore.summ --book_path all_books_chunked_150000.pkl 
    --summ_path summaries.json --model claude-3-opus-20240229 
    --api anthropic --api_key api_key.txt --method hier 
    --chunk_size 150000 --max_context_len 200000

Example usage (Mixtral 8x7B):

python -m booookscore.summ --book_path all_books_chunked_30000.pkl 
    --summ_path summaries.json --model mistralai/Mixtral-8x7B-Instruct-v0.1
    --api together --api_key api_key.txt --method hier 
    --chunk_size 30000 --max_context_len 32000

Checkpointing

Incremental updating saves progress every 10 chunks. Hierarchical merging saves progress every book. Improved checkpointing (and data structure as well) for hierarchical merging will be implemented in future versions!

Post-processing summaries

After generating summaries with incremental updating or hierarchical merging, we create a json file with a dictionary that maps book names to their final summaries. If the input file is summaries.json, then the extracted final summaries will be saved to summaries_cleaned.json.

python -m booookscore.postprocess --input_path {input_path} 
    --model {model} --api {api} --api_key {api_key}
  • --input_path: the path to the chunked data (pickle file)
  • --model (optional): which model to use if you want a LLM to remove summary artifacts
  • --api (optional): which API to use, currently supports openai, anthropic, together
  • --api_key (optional): the path to the txt file storing your OpenAI API key
  • --remove_artifacts (optional): if specified, it will ask a language model remove artifacts from merging (must also specify model and api_key in this case)

Example usage (without artifact removal):

python -m booookscore.postprocess --input_path summaries.json

Example usage (with artifact removal):

python -m booookscore.postprocess --input_path summaries.json --model gpt-4 
    --api openai --api_key api_key.txt --remove_artifacts

Compute BooookScore

python -m booookscore.score --summ_path {summ_path} --annot_path {annot_path} 
    --model {model} --api {api} --api_key {api_key}

The input summaries must be stored in a json file that maps from book names to final book summaries.

  • --summ_path: the path to all summaries (must specify if there are no annotations yet)
  • --annot_path: the path to model-generated annotations
  • --model: which model to use
  • --api: which API to use, currently supports openai, anthropic, together
  • --api_key: the path to the txt file storing your API key
  • --v2 (optional): if specified, it will generate annotations using v2 code and prompt, which uses sentence batching instead of evaluating sentence by sentence (contributed by @IlyaGusev!)
  • --batch_size (optional): batch size to use if using v2

Example usage (original BooookScore):

python -m booookscore.score --summ_path summaries/chatgpt-2048-hier-cleaned.json 
    --annot_path annotations.json --model gpt-4 
    --api openai --api_key api_key.txt

Example usage (v2 BooookScore with sentence batching):

python -m booookscore.score --summ_path summaries/chatgpt-2048-hier-cleaned.json 
    --annot_path annotations.json --model gpt-4 --api openai 
    --api_key api_key.txt --v2 --batch_size 10

✅ TODO's for future versions

  • Rework the data structure used for hierarchical summaries, it would be best to maintain a mapping between summaries that are one level apart.
  • Improve checkpoint for hierarchical merging, currently it only saves outputs when it gets through the whole book.

About

A package to generate summaries of long-form text and evaluate the coherence of these summaries. Official package for our ICLR 2024 paper, "BooookScore: A systematic exploration of book-length summarization in the era of LLMs".

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages