-
Notifications
You must be signed in to change notification settings - Fork 43
/
rnn_train.py
161 lines (135 loc) · 5.49 KB
/
rnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding: UTF-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from datetime import timedelta
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
# 权重初始化,默认xavier
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
else:
pass
def train(config, model, train_iter, dev_iter, test_iter):
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(
model.parameters(), lr=config.rnn_learning_rate)
# 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
total_batch = 0 # 记录进行到多少batch
dev_best_loss = float('inf')
for epoch in range(config.rnn_num_epochs):
print('Epoch [{}/{}]'.format(epoch, config.rnn_num_epochs))
# scheduler.step() # 学习率衰减
for i, data in enumerate(train_iter):
trains, labels = data.text, data.label
outputs, _ = model(trains)
model.zero_grad()
loss = F.cross_entropy(outputs, labels)
loss.backward()
optimizer.step()
if total_batch % 30 == 0:
# 每多少轮输出在训练集和验证集上的效果
true = labels.data.cpu()
predic = torch.max(outputs.data, 1)[1].cpu()
train_acc = metrics.accuracy_score(true, predic)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
torch.save(model.state_dict(), config.rnn_path)
improve = '*'
last_improve = total_batch
else:
improve = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss.item(), train_acc,
dev_loss, dev_acc, time_dif, improve))
model.train()
total_batch += 1
test(config, model, test_iter)
def test(config, model, test_iter):
# test
model.load_state_dict(torch.load(config.rnn_path))
model.eval()
start_time = time.time()
test_acc, test_loss, test_report, test_confusion = evaluate(
config, model, test_iter, test=True)
msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'
print(msg.format(test_loss, test_acc))
print("Precision, Recall and F1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
def evaluate(config, model, data_iter, test=False):
model.eval()
loss_total = 0
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
with torch.no_grad():
for i, data in enumerate(train_iter):
texts, labels = data.text, data.label
outputs, _ = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predic)
acc = metrics.accuracy_score(labels_all, predict_all)
if test:
report = metrics.classification_report(
labels_all, predict_all, target_names=config.class_char, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
return acc, loss_total / len(data_iter), report, confusion
return acc, loss_total / len(data_iter)
def concert(ids, t):
strs = ""
for i in ids:
strs += TEXT.vocab.itos[i+t]
return strs
if __name__ == "__main__":
from config import Config
import pandas as pd
import torchtext.vocab as Vocab
from torchtext import data, vocab
from rnn_dataset import rnn_iter
from models import TextRNN
config = Config()
train_path = config.rnn_train_path
test_path = config.rnn_test_path
TEXT = data.Field(sequential=True,
tokenize=lambda x: [t for t in x],
lower=True, fix_length=config.max_text_len)
LABEL = data.Field(sequential=False, use_vocab=False)
train_iter, test_iter, weight_matrix = rnn_iter(
train_path, test_path, config.rnn_batch_size, TEXT, LABEL)
# 存储映射字典、embeding_matrix
np.save(config.stoi_path, dict(TEXT.vocab.stoi))
np.save(config.embed_path, weight_matrix)
# train
config.rnn_n_vocab = len(weight_matrix)
model = TextRNN.Model(config).to(config.device)
init_network(model)
print(model.parameters)
train(config, model, train_iter, test_iter, test_iter)
evaluate(config, model, test_iter)