-
Notifications
You must be signed in to change notification settings - Fork 5
/
module.py
363 lines (292 loc) · 13.3 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.nn as nn
import torch.nn.init as I
import torch.nn.functional as F
def log_sum_exp(tensor, dim=0, keepdim: bool = False):
"""LogSumExp operation."""
m, _ = tensor.max(dim, keepdim=keepdim)
if keepdim:
stable_vec = tensor - m
else:
stable_vec = tensor - m.unsqueeze(dim)
return m + (stable_vec.exp().sum(dim, keepdim=keepdim)).log()
def sequence_mask(lens, max_len=None):
batch_size = lens.size(0)
if max_len is None:
max_len = lens.max().item()
ranges = torch.arange(0, max_len, device=lens.device).long()
ranges = ranges.unsqueeze(0).expand(batch_size, max_len)
lens_exp = lens.unsqueeze(1).expand_as(ranges)
mask = ranges < lens_exp
return mask
class Linear(nn.Linear):
def __init__(self, in_features, out_features, bias=True, init=None):
super().__init__(in_features, out_features, bias=bias)
self.init_weight(init)
def init_weight(self, init=None):
if init == 'orthogonal':
I.orthogonal_(self.weight)
elif init == 'xavier_normal':
I.xavier_normal_(self.weight)
class Linears(nn.Module):
def __init__(self, sizes,
activation='tanh',
nonlinear_last=False):
super(Linears, self).__init__()
assert len(sizes) > 2
self.layers = nn.ModuleList([nn.Linear(sizes[i], sizes[i + 1])
for i in range(len(sizes) - 1)])
self.activation = getattr(torch, activation)
self.nonlinear_last = nonlinear_last
def forward(self, inputs):
for layer_idx, layer in enumerate(self.layers):
if layer_idx != 0:
inputs = self.activation(inputs)
inputs = layer(inputs)
if self.nonlinear_last:
inputs = self.activation(inputs)
return inputs
class Highway(nn.Module):
def __init__(self, size, activation='tanh'):
super().__init__()
self.size = size
self.activation = getattr(torch, activation)
self.linear = Linear(size, size)
self.non_linear = Linear(size, size)
self.gate = Linear(size, size)
def forward(self, x):
gate = self.gate(x).sigmoid()
linear = self.linear(x)
non_linear = self.activation(self.non_linear(x))
return gate * non_linear + (1 - gate) * linear
# return gate * self.activation(self.linear(x)) + (1 - gate) * x
class LSTM(nn.LSTM):
def __init__(self, *args, **kwargs):
super().__init__(*args, **{k: v for k, v in kwargs.items()
if k != 'forget_bias'})
self.forget_bias = kwargs.get('forget_bias', 0.0)
self.output_size = kwargs.get('hidden_size') * \
(2 if kwargs.get('bidirectional', False) else 1)
self.initialize()
def initialize(self):
for n, p in self.named_parameters():
if 'bias' in n:
bias_size = p.size(0)
p.data[bias_size // 4:bias_size // 2].fill_(self.forget_bias)
class CharCNN(nn.Module):
"""Character-level CNNs that generate a character-level representation for
each word from its compositional characters.
"""
def __init__(self, embedding_num, embedding_dim, filters, dropout=0,
padding_idx=0):
super(CharCNN, self).__init__()
self.embedding_num = embedding_num
self.embedding_dim = embedding_dim
self.output_size = sum([x[1] for x in filters])
self.filters = filters
self.char_embed = nn.Embedding(
embedding_num, embedding_dim, padding_idx=padding_idx)
self.convs = nn.ModuleList([nn.Conv2d(1, x[1], (x[0], embedding_dim))
for x in filters])
self.dropout = nn.Dropout(p=dropout)
def forward(self, inputs):
inputs_embed = self.char_embed.forward(inputs)
inputs_embed = inputs_embed.unsqueeze(1)
conv_outputs = [F.leaky_relu(conv.forward(inputs_embed)).squeeze(3)
for conv in self.convs]
conv_outputs_max = [F.max_pool1d(i, i.size(2)).squeeze(2)
for i in conv_outputs]
outputs = torch.cat(conv_outputs_max, 1)
outputs = self.dropout(outputs)
return outputs
class CharCNNFF(nn.Module):
def __init__(self, embedding_num, embedding_dim, filters,
padding_idx=0, output_size=None):
super(CharCNNFF, self).__init__()
self.embedding_num = embedding_num
self.embedding_dim = embedding_dim
self.conv_output_size = sum([x[1] for x in filters])
self.output_size = output_size if output_size else self.conv_output_size
self.filters = filters
self.char_embed = nn.Embedding(embedding_num, embedding_dim,
padding_idx=padding_idx)
self.convs = nn.ModuleList([nn.Conv2d(1, x[1], (x[0], embedding_dim))
for x in filters])
self.linear = nn.Linear(self.conv_output_size, self.output_size)
def forward(self, inputs):
inputs_embed = self.char_embed.forward(inputs)
inputs_embed = inputs_embed.unsqueeze(1)
conv_outputs = [F.tanh(conv.forward(inputs_embed)).squeeze(3)
for conv in self.convs]
conv_outputs_max = [F.max_pool1d(i, i.size(2)).squeeze(2)
for i in conv_outputs]
outputs = torch.cat(conv_outputs_max, 1)
# outputs = F.tanh(self.linear(outputs))
outputs = F.leaky_relu(self.linear(outputs))
return outputs
class CharCNNHW(nn.Module):
def __init__(self, embedding_num, embedding_dim, filters,
padding_idx=0):
super(CharCNNHW, self).__init__()
self.embedding_num = embedding_num
self.embedding_dim = embedding_dim
self.conv_output_size = sum([x[1] for x in filters])
self.output_size = self.conv_output_size
self.filters = filters
self.char_embed = nn.Embedding(embedding_num, embedding_dim,
padding_idx=padding_idx)
self.convs = nn.ModuleList([nn.Conv2d(1, x[1], (x[0], embedding_dim))
for x in filters])
self.highway = Highway(self.conv_output_size, activation='leaky_relu')
def forward(self, inputs):
inputs_embed = self.char_embed.forward(inputs)
inputs_embed = inputs_embed.unsqueeze(1)
conv_outputs = [F.tanh(conv.forward(inputs_embed)).squeeze(3)
for conv in self.convs]
conv_outputs_max = [F.max_pool1d(i, i.size(2)).squeeze(2)
for i in conv_outputs]
outputs = torch.cat(conv_outputs_max, 1)
outputs = self.highway(outputs)
return outputs
class CRF(nn.Module):
def __init__(self, label_vocab, tag_scheme='bioes'):
super(CRF, self).__init__()
self.label_vocab = label_vocab
self.label_size = len(label_vocab) + 2
self.tag_scheme = tag_scheme
self.start = self.label_size - 2
self.end = self.label_size - 1
transition = torch.randn(self.label_size, self.label_size)
self.transition = nn.Parameter(transition)
self.initialize()
def initialize(self):
self.transition.data[:, self.end] = -10000.0
self.transition.data[self.start, :] = -10000.0
for label_from, label_from_idx in self.label_vocab.items():
if label_from == 'O':
label_from_prefix, label_from_type = 'O', 'O'
else:
label_from_prefix, label_from_type = label_from.split('-')
for label_to, label_to_idx in self.label_vocab.items():
if label_to == 'O':
label_to_prefix, label_to_type = 'O', 'O'
else:
label_to_prefix, label_to_type = label_to.split('-')
is_allowed = any(
[
label_from_prefix in ['O', 'E', 'S']
and label_to_prefix in ['O', 'B', 'S'],
label_from_prefix in ['B', 'I']
and label_to_prefix in ['I', 'E']
and label_from_type == label_to_type
]
)
if not is_allowed:
self.transition.data[
label_to_idx, label_from_idx] = -10000.0
def pad_logits(self, logits):
"""Pad the linear layer output with <SOS> and <EOS> scores.
:param logits: Linear layer output (no non-linear function).
"""
batch_size, seq_len, label_num = logits.size()
pads = logits.new_full((batch_size, seq_len, 2), -10000.0,
requires_grad=False)
logits = torch.cat([logits, pads], dim=2)
return logits
def calc_binary_score(self, labels, lens):
batch_size, seq_len = labels.size()
# A tensor of size batch_size * (seq_len + 2)
labels_ext = labels.new_empty((batch_size, seq_len + 2))
labels_ext[:, 0] = self.start
labels_ext[:, 1:-1] = labels
mask = sequence_mask(lens + 1, max_len=(seq_len + 2)).long()
pad_stop = labels.new_full((1,), self.end, requires_grad=False)
pad_stop = pad_stop.unsqueeze(-1).expand(batch_size, seq_len + 2)
labels_ext = (1 - mask) * pad_stop + mask * labels_ext
labels = labels_ext
trn = self.transition
trn_exp = trn.unsqueeze(0).expand(batch_size, self.label_size,
self.label_size)
lbl_r = labels[:, 1:]
lbl_rexp = lbl_r.unsqueeze(-1).expand(*lbl_r.size(), self.label_size)
# score of jumping to a tag
trn_row = torch.gather(trn_exp, 1, lbl_rexp)
lbl_lexp = labels[:, :-1].unsqueeze(-1)
trn_scr = torch.gather(trn_row, 2, lbl_lexp)
trn_scr = trn_scr.squeeze(-1)
mask = sequence_mask(lens + 1).float()
trn_scr = trn_scr * mask
score = trn_scr
return score
def calc_unary_score(self, logits, labels, lens):
"""Checked"""
labels_exp = labels.unsqueeze(-1)
scores = torch.gather(logits, 2, labels_exp).squeeze(-1)
mask = sequence_mask(lens).float()
scores = scores * mask
return scores
def calc_gold_score(self, logits, labels, lens):
"""Checked"""
unary_score = self.calc_unary_score(logits, labels, lens).sum(
1).squeeze(-1)
binary_score = self.calc_binary_score(labels, lens).sum(1).squeeze(-1)
return unary_score + binary_score
def calc_norm_score(self, logits, lens):
batch_size, seq_len, feat_dim = logits.size()
alpha = logits.new_full((batch_size, self.label_size), -10000.0)
alpha[:, self.start] = 0
lens_ = lens.clone()
logits_t = logits.transpose(1, 0)
for logit in logits_t:
logit_exp = logit.unsqueeze(-1).expand(batch_size,
self.label_size,
self.label_size)
alpha_exp = alpha.unsqueeze(1).expand(batch_size,
self.label_size,
self.label_size)
trans_exp = self.transition.unsqueeze(0).expand_as(alpha_exp)
mat = logit_exp + alpha_exp + trans_exp
alpha_nxt = log_sum_exp(mat, 2).squeeze(-1)
mask = (lens_ > 0).float().unsqueeze(-1).expand_as(alpha)
alpha = mask * alpha_nxt + (1 - mask) * alpha
lens_ = lens_ - 1
alpha = alpha + self.transition[self.end].unsqueeze(0).expand_as(alpha)
norm = log_sum_exp(alpha, 1).squeeze(-1)
return norm
def viterbi_decode(self, logits, lens):
"""Borrowed from pytorch tutorial
Arguments:
logits: [batch_size, seq_len, n_labels] FloatTensor
lens: [batch_size] LongTensor
"""
batch_size, seq_len, n_labels = logits.size()
vit = logits.new_full((batch_size, self.label_size), -100.0)
vit[:, self.start] = 0
c_lens = lens.clone()
logits_t = logits.transpose(1, 0)
pointers = []
for logit in logits_t:
vit_exp = vit.unsqueeze(1).expand(batch_size, n_labels, n_labels)
trn_exp = self.transition.unsqueeze(0).expand_as(vit_exp)
vit_trn_sum = vit_exp + trn_exp
vt_max, vt_argmax = vit_trn_sum.max(2)
vt_max = vt_max.squeeze(-1)
vit_nxt = vt_max + logit
pointers.append(vt_argmax.squeeze(-1).unsqueeze(0))
mask = (c_lens > 0).float().unsqueeze(-1).expand_as(vit_nxt)
vit = mask * vit_nxt + (1 - mask) * vit
mask = (c_lens == 1).float().unsqueeze(-1).expand_as(vit_nxt)
vit += mask * self.transition[self.end].unsqueeze(
0).expand_as(vit_nxt)
c_lens = c_lens - 1
pointers = torch.cat(pointers)
scores, idx = vit.max(1)
paths = [idx.unsqueeze(1)]
for argmax in reversed(pointers):
idx_exp = idx.unsqueeze(-1)
idx = torch.gather(argmax, 1, idx_exp)
idx = idx.squeeze(-1)
paths.insert(0, idx.unsqueeze(1))
paths = torch.cat(paths[1:], 1)
scores = scores.squeeze(-1)
return scores, paths