Skip to content

Latest commit

 

History

History
102 lines (95 loc) · 2.73 KB

syllabus.md

File metadata and controls

102 lines (95 loc) · 2.73 KB

Prerequisite

Introductory knowledge in any programming language and a basic knowledge of astronomy is considered a pre-requisite.

Python (12 weeks)

  1. Preliminary stuff
  • How computers read code
  • Algorithms and flowcharts
  • Features of python
  • Scripts, REPL and IDEs
  • Jupyter notebook and Google Colab
  • Scripts vs Functions
  • Importing code: Modules and packages
  • Standard Library and External package installation
  • File I/O
  1. Basics of Python (3 weeks)
  • Bools
  • Numbers
  • Conditionals
  • Comparisons
  • Strings
  • Lists
  • Loops
  • Tuples
  • Dicts
  1. Numerical analysis using Numpy (1 week)
  • Numpy arrays
  • Creating arrays
  • Basic data types
  • Basic visualization
  • Indexing and slicing
  1. Plotting using Matplotlib (1 week)
  • Scatter plots
  • Error bars
  • Histograms
  • Subplots
  • Imshow
  1. Tabular data analaysis with Pandas (1 week)
  • Dataframes and Series
  • Reading files
  • Indexing
  • Missing data management
  • Merge and join
  1. (Advanced) Machine Learning using Scikit-learn
  • What is machine learning
  • Types of ML
  • Classical ML methods
  • Decision trees and RFs
  • PCA and SVN
  • Perceptron
  • Backpropagation

Astronomy

  1. Observational Astronomy:
    • Astronomical coordinates
    • MJD
    • Magnitudes
    • Different wavelengths
    • Telescopes
  2. Data analysis in astronomy (3 weeks)
    • Software tools:
    • Vizier Simbad, etc
    • CASJOBS
    • Astronomical packages in python:
      • Astropy
      • Astroquery
      • AstroML
    • Modern sky surveys:
    • SDSS
    • Panstarrs
    • Gaia
    • CRTS
  3. (Optional) Variable Stars (3 weeks)
    • What are stars?
    • What are variable stars?
    • Types of variability
    • Raw and phase folded light curves (Data Analysis)
    • Methods for finding periods: Lomb scargle (Data Analysis)
  4. (Optional) Galaxy (3 weeks)
    • What are galaxies?
    • Galaxy morphology
    • Hubble tuning fork
    • Analyzing image data from telescope

References