forked from VIDA-NYU/city-surfaces
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
643 lines (558 loc) · 27.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
"""
Copyright 2020 Nvidia Corporation
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import absolute_import
from __future__ import division
import argparse
import os
import sys
import time
import torch
from math import sqrt
from apex import amp
from runx.logx import logx
from config import assert_and_infer_cfg, update_epoch, cfg
from utils.misc import AverageMeter, prep_experiment, eval_metrics
from utils.misc import ImageDumper
from utils.trnval_utils import eval_minibatch, validate_topn
from loss.utils import get_loss
from loss.optimizer import get_optimizer, restore_opt, restore_net
import datasets
import network
import pandas as pd
import numpy as np
# Import autoresume module
sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
AutoResume = None
try:
from userlib.auto_resume import AutoResume
except ImportError:
print(AutoResume)
# Argument Parser
parser = argparse.ArgumentParser(description='Semantic Segmentation')
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--arch', type=str, default='ocrnet.HRNet_Mscale',
help='Network architecture.')
parser.add_argument('--old_data', action='store_true', default = False, help='sets the dataset to the first one in hrnet')
parser.add_argument('--dataset', type=str, default='citysurfaces',
help='citysurfaces')
parser.add_argument('--dataset_inst', default=None,
help='placeholder for dataset instance')
parser.add_argument('--num_workers', type=int, default=4,
help='cpu worker threads per dataloader instance')
parser.add_argument('--cv', type=int, default=0,
help=('Cross-validation split id to use. Default # of splits set'
' to 3 in config'))
parser.add_argument('--class_uniform_pct', type=float, default=0.5,
help='What fraction of images is uniformly sampled')
parser.add_argument('--class_uniform_tile', type=int, default=512,
help='tile size for class uniform sampling')
parser.add_argument('--coarse_boost_classes', type=str, default=None,
help='Use coarse annotations for specific classes')
parser.add_argument('--custom_coarse_dropout_classes', type=str, default=None,
help='Drop some classes from auto-labelling')
parser.add_argument('--img_wt_loss', action='store_true', default=True,
help='per-image class-weighted loss')
parser.add_argument('--rmi_loss', action='store_true', default=False,
help='use RMI loss')
parser.add_argument('--batch_weighting', action='store_true', default=True,
help=('Batch weighting for class (use nll class weighting using '
'batch stats'))
parser.add_argument('--jointwtborder', action='store_true', default=False,
help='Enable boundary label relaxation')
parser.add_argument('--strict_bdr_cls', type=str, default='',
help='Enable boundary label relaxation for specific classes')
parser.add_argument('--rlx_off_epoch', type=int, default=80,
help='Turn off border relaxation after specific epoch count')
parser.add_argument('--rescale', type=float, default=1.0,
help='Warm Restarts new lr ratio compared to original lr')
parser.add_argument('--repoly', type=float, default=1.5,
help='Warm Restart new poly exp')
parser.add_argument('--apex', action='store_true', default=True,
help='Use Nvidia Apex Distributed Data Parallel')
parser.add_argument('--fp16', action='store_true', default=True,
help='Use Nvidia Apex AMP')
parser.add_argument('--local_rank', default=0, type=int,
help='parameter used by apex library')
parser.add_argument('--global_rank', default=0, type=int,
help='parameter used by apex library')
parser.add_argument('--optimizer', type=str, default='sgd', help='optimizer')
parser.add_argument('--amsgrad', action='store_true', help='amsgrad for adam')
parser.add_argument('--freeze_trunk', action='store_true', default=False)
parser.add_argument('--hardnm', default=0, type=int,
help=('0 means no aug, 1 means hard negative mining '
'iter 1, 2 means hard negative mining iter 2'))
parser.add_argument('--trunk', type=str, default='hrnetv2',
help='trunk model, can be: resnet101 (default), resnet50')
parser.add_argument('--max_epoch', type=int, default=180)
parser.add_argument('--max_cu_epoch', type=int, default=150,
help='Class Uniform Max Epochs')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--color_aug', type=float,
default=0.25, help='level of color augmentation')
parser.add_argument('--gblur', action='store_true', default=False,
help='Use Guassian Blur Augmentation')
parser.add_argument('--bblur', action='store_true', default=True,
help='Use Bilateral Blur Augmentation')
parser.add_argument('--brt_aug', action='store_true', default=False,
help='Use brightness augmentation')
parser.add_argument('--lr_schedule', type=str, default='poly',
help='name of lr schedule: poly')
parser.add_argument('--poly_exp', type=float, default=2.0,
help='polynomial LR exponent')
parser.add_argument('--poly_step', type=int, default=110,
help='polynomial epoch step')
parser.add_argument('--bs_trn', type=int, default=2,
help='Batch size for training per gpu')
parser.add_argument('--bs_val', type=int, default=1,
help='Batch size for Validation per gpu')
parser.add_argument('--crop_size', type=str, default='640,640',
help=('training crop size: either scalar or h,w'))
parser.add_argument('--scale_min', type=float, default=0.5,
help='dynamically scale training images down to this size')
parser.add_argument('--scale_max', type=float, default=2.0,
help='dynamically scale training images up to this size')
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--snapshot', type=str, default=None)
parser.add_argument('--resume', type=str, default=None,
help=('continue training from a checkpoint. weights, '
'optimizer, schedule are restored'))
parser.add_argument('--restore_optimizer', action='store_true', default=False)
parser.add_argument('--restore_net', action='store_true', default=False)
parser.add_argument('--exp', type=str, default='default',
help='experiment directory name')
parser.add_argument('--result_dir', type=str, default=None,
help='where to write log output')
parser.add_argument('--syncbn', action='store_true', default=False,
help='Use Synchronized BN')
parser.add_argument('--dump_augmentation_images', action='store_true', default=False,
help='Dump Augmentated Images for sanity check')
parser.add_argument('--test_mode', action='store_true', default=False,
help=('Minimum testing to verify nothing failed, '
'Runs code for 1 epoch of train and val'))
parser.add_argument('-wb', '--wt_bound', type=float, default=1.0,
help='Weight Scaling for the losses')
parser.add_argument('--maxSkip', type=int, default=0,
help='Skip x number of frames of video augmented dataset')
parser.add_argument('--scf', action='store_true', default=False,
help='scale correction factor')
# Full Crop Training
parser.add_argument('--full_crop_training', action='store_true', default=False,
help='Full Crop Training')
# Multi Scale Inference
parser.add_argument('--multi_scale_inference', action='store_true',
help='Run multi scale inference')
parser.add_argument('--default_scale', type=float, default=1.0,
help='default scale to run validation')
parser.add_argument('--log_msinf_to_tb', action='store_true', default=False,
help='Log multi-scale Inference to Tensorboard')
parser.add_argument('--eval', type=str, default=None,
help=('just run evaluation, can be set to val or trn or '
'folder'))
parser.add_argument('--eval_folder', type=str, default=None,
help='path to frames to evaluate')
parser.add_argument('--three_scale', action='store_true', default=False)
parser.add_argument('--alt_two_scale', action='store_true', default=False)
parser.add_argument('--do_flip', action='store_true', default=False)
parser.add_argument('--extra_scales', type=str, default='0.5,1.5,2.0')
parser.add_argument('--n_scales', type=str, default=None)
parser.add_argument('--align_corners', action='store_true',
default=False)
parser.add_argument('--translate_aug_fix', action='store_true', default=False)
parser.add_argument('--mscale_lo_scale', type=float, default=0.5,
help='low resolution training scale')
parser.add_argument('--pre_size', type=int, default=None,
help=('resize long edge of images to this before'
' augmentation'))
parser.add_argument('--amp_opt_level', default='O1', type=str,
help=('amp optimization level'))
parser.add_argument('--rand_augment', default=None,
help='RandAugment setting: set to \'N,M\'')
parser.add_argument('--init_decoder', default=False, action='store_true',
help='initialize decoder with kaiming normal')
parser.add_argument('--dump_topn', type=int, default=50,
help='Dump worst val images')
parser.add_argument('--dump_assets', action='store_true',
help='Dump interesting assets')
parser.add_argument('--dump_all_images', action='store_true',
help='Dump all images, not just a subset')
parser.add_argument('--dump_for_submission', action='store_true',
help='Dump assets for submission')
parser.add_argument('--dump_for_auto_labelling', action='store_true',
help='Dump assets for autolabelling')
parser.add_argument('--dump_topn_all', action='store_true', default=True,
help='dump topN worst failures')
parser.add_argument('--custom_coarse_prob', type=float, default=None,
help='Custom Coarse Prob')
parser.add_argument('--only_coarse', action='store_true', default=False)
parser.add_argument('--mask_out_cityscapes', action='store_true',
default=False)
parser.add_argument('--ocr_aspp', action='store_true', default=False)
parser.add_argument('--map_crop_val', action='store_true', default=False)
parser.add_argument('--aspp_bot_ch', type=int, default=None)
parser.add_argument('--trial', type=int, default=None)
parser.add_argument('--mscale_cat_scale_flt', action='store_true',
default=False)
parser.add_argument('--mscale_dropout', action='store_true',
default=False)
parser.add_argument('--mscale_no3x3', action='store_true',
default=False, help='no inner 3x3')
parser.add_argument('--mscale_old_arch', action='store_true',
default=False, help='use old attention head')
parser.add_argument('--mscale_init', type=float, default=None,
help='default attention initialization')
parser.add_argument('--attnscale_bn_head', action='store_true',
default=False)
parser.add_argument('--set_cityscapes_root', type=str, default=None,
help='override cityscapes default root dir')
parser.add_argument('--ocr_alpha', type=float, default=None,
help='set HRNet OCR auxiliary loss weight')
parser.add_argument('--val_freq', type=int, default=1,
help='how often (in epochs) to run validation')
parser.add_argument('--deterministic', action='store_true',
default=False)
parser.add_argument('--summary', action='store_true',
default=False)
parser.add_argument('--segattn_bot_ch', type=int, default=None,
help='bottleneck channels for seg and attn heads')
parser.add_argument('--grad_ckpt', action='store_true',
default=False)
parser.add_argument('--no_metrics', action='store_true', default=False,
help='prevent calculation of metrics')
parser.add_argument('--supervised_mscale_loss_wt', type=float, default=None,
help='weighting for the supervised loss')
parser.add_argument('--ocr_aux_loss_rmi', action='store_true', default=False,
help='allow rmi for aux loss')
parser.add_argument('--tau_factor', type=float, default=1,
help='Factor for NASA optimzation function')
args = parser.parse_args()
args.best_record = {'epoch': -1, 'iter': 0, 'val_loss': 1e10, 'acc': 0,
'acc_cls': 0, 'mean_iu': 0, 'fwavacc': 0}
# Enable CUDNN Benchmarking optimization
torch.backends.cudnn.benchmark = True
if args.deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args.world_size = 1
# Test Mode run two epochs with a few iterations of training and val
if args.test_mode:
args.max_epoch = 2
if 'WORLD_SIZE' in os.environ and args.apex:
# args.apex = int(os.environ['WORLD_SIZE']) > 1
args.world_size = int(os.environ['WORLD_SIZE'])
args.global_rank = int(os.environ['RANK'])
if args.apex:
print('Global Rank: {} Local Rank: {}'.format(
args.global_rank, args.local_rank))
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
def check_termination(epoch):
if AutoResume:
shouldterminate = AutoResume.termination_requested()
if shouldterminate:
if args.global_rank == 0:
progress = "Progress %d%% (epoch %d of %d)" % (
(epoch * 100 / args.max_epoch),
epoch,
args.max_epoch
)
AutoResume.request_resume(
user_dict={"RESUME_FILE": logx.save_ckpt_fn,
"TENSORBOARD_DIR": args.result_dir,
"EPOCH": str(epoch)
}, message=progress)
return 1
else:
return 1
return 0
def main():
"""
Main Function
"""
if AutoResume:
AutoResume.init()
assert args.result_dir is not None, 'need to define result_dir arg'
logx.initialize(logdir=args.result_dir,
tensorboard=True, hparams=vars(args),
global_rank=args.global_rank)
# Set up the Arguments, Tensorboard Writer, Dataloader, Loss Fn, Optimizer
assert_and_infer_cfg(args)
prep_experiment(args)
train_loader, val_loader, train_obj = \
datasets.setup_loaders(args)
criterion, criterion_val = get_loss(args)
auto_resume_details = None
if AutoResume:
auto_resume_details = AutoResume.get_resume_details()
if auto_resume_details:
checkpoint_fn = auto_resume_details.get("RESUME_FILE", None)
checkpoint = torch.load(checkpoint_fn,
map_location=torch.device('cpu'))
args.result_dir = auto_resume_details.get("TENSORBOARD_DIR", None)
args.start_epoch = int(auto_resume_details.get("EPOCH", None)) + 1
args.restore_net = True
args.restore_optimizer = True
msg = ("Found details of a requested auto-resume: checkpoint={}"
" tensorboard={} at epoch {}")
logx.msg(msg.format(checkpoint_fn, args.result_dir,
args.start_epoch))
elif args.resume:
checkpoint = torch.load(args.resume,
map_location=torch.device('cpu'))
args.arch = checkpoint['arch']
args.start_epoch = int(checkpoint['epoch']) + 1
args.restore_net = True
args.restore_optimizer = True
msg = "Resuming from: checkpoint={}, epoch {}, arch {}"
logx.msg(msg.format(args.resume, args.start_epoch, args.arch))
elif args.snapshot:
if 'ASSETS_PATH' in args.snapshot:
args.snapshot = args.snapshot.replace('ASSETS_PATH', cfg.ASSETS_PATH)
checkpoint = torch.load(args.snapshot,
map_location=torch.device('cpu'))
args.restore_net = True
msg = "Loading weights from: checkpoint={}".format(args.snapshot)
logx.msg(msg)
#define the NASA optimizer parameter
net = network.get_net(args, criterion)
optim, scheduler = get_optimizer(args, net)
# optim, scheduler = get_optimizer(args, net, tau, k)
# Visualize feature maps
#activation = {}
#def get_activation(name):
#def hook(model, input, output):
#activation[name] = output.detach()
#return hook
#net.layer[0].register_forward_hook(get_activation('conv1'))
#data, _ = dataset[0]
#data.unsqueeze_(0)
#output = model(data)
#act = activation['conv1'].squeeze()
#fig, axarr = plt.subplots(act.size(0))
#for idx in range(act.size(0)):
#axarr[idx].imshow(act[idx])
if args.fp16:
net, optim = amp.initialize(net, optim, opt_level=args.amp_opt_level)
net = network.wrap_network_in_dataparallel(net, args.apex)
if args.summary:
from thop import profile
img = torch.randn(1, 3, 640, 640).cuda()
mask = torch.randn(1, 1, 640, 640).cuda()
macs, params = profile(net, inputs={'images': img, 'gts': mask})
print(f'macs {macs} params {params}')
sys.exit()
if args.restore_optimizer:
restore_opt(optim, checkpoint)
if args.restore_net:
restore_net(net, checkpoint)
if args.init_decoder:
net.module.init_mods()
torch.cuda.empty_cache()
if args.start_epoch != 0:
scheduler.step(args.start_epoch)
# There are 4 options for evaluation:
# --eval val just run validation
# --eval val --dump_assets dump all images and assets
# --eval folder run validation on an input folder of images(calculate metrics)
# --eval folder --dump_assets dump all images and assets
# --eval test run inference on an input folder of images
if args.eval == 'test':
validate(val_loader, net, criterion=None, optim=None, epoch=0,
calc_metrics=False, dump_assets=args.dump_assets,
dump_all_images=True, testing=True)
return 0
if args.eval == 'val':
if args.dump_topn:
validate_topn(val_loader, net, criterion_val, optim, 0, args)
else:
validate(val_loader, net, criterion=criterion_val, optim=optim, epoch=0,
dump_assets=args.dump_assets,
dump_all_images=args.dump_all_images,
calc_metrics=not args.no_metrics)
return 0
elif args.eval == 'folder':
# Using a folder for evaluation means to not calculate metrics
validate(val_loader, net, criterion=criterion_val, optim=optim, epoch=0,
calc_metrics=False, dump_assets=args.dump_assets,
dump_all_images=True)
return 0
elif args.eval is not None:
raise 'unknown eval option {}'.format(args.eval)
for epoch in range(args.start_epoch, args.max_epoch):
update_epoch(epoch)
if args.only_coarse:
train_obj.only_coarse()
train_obj.build_epoch()
if args.apex:
train_loader.sampler.set_num_samples()
elif args.class_uniform_pct:
if epoch >= args.max_cu_epoch:
train_obj.disable_coarse()
train_obj.build_epoch()
if args.apex:
train_loader.sampler.set_num_samples()
else:
train_obj.build_epoch()
else:
pass
train(train_loader, net, optim, epoch)
if args.apex:
train_loader.sampler.set_epoch(epoch + 1)
if epoch % args.val_freq == 0:
validate(val_loader, net, criterion_val, optim, epoch)
scheduler.step()
if check_termination(epoch):
return 0
def train(train_loader, net, optim, curr_epoch):
"""
Runs the training loop per epoch
train_loader: Data loader for train
net: thet network
optimizer: optimizer
curr_epoch: current epoch
return:
"""
net.train()
train_main_loss = AverageMeter()
start_time = None
warmup_iter = 10
loss_metric = dict([('epoch', []), ('loss', []), ('lr', [])])
for i, data in enumerate(train_loader):
if i <= warmup_iter:
start_time = time.time()
images, gts, _img_name, scale_float = data
batch_pixel_size = images.size(0) * images.size(2) * images.size(3)
images, gts, scale_float = images.cuda(), gts.cuda(), scale_float.cuda()
inputs = {'images': images, 'gts': gts}
optim.zero_grad()
main_loss = net(inputs)
if args.apex:
log_main_loss = main_loss.clone().detach_()
torch.distributed.all_reduce(log_main_loss,
torch.distributed.ReduceOp.SUM)
log_main_loss = log_main_loss / args.world_size
else:
main_loss = main_loss.mean()
log_main_loss = main_loss.clone().detach_()
train_main_loss.update(log_main_loss.item(), batch_pixel_size)
if args.fp16:
with amp.scale_loss(main_loss, optim) as scaled_loss:
scaled_loss.backward()
else:
main_loss.backward()
optim.step()
if i >= warmup_iter:
curr_time = time.time()
batches = i - warmup_iter + 1
batchtime = (curr_time - start_time) / batches
else:
batchtime = 0
msg = ('[epoch {}], [iter {} / {}], [train main loss {:0.6f}],'
' [lr {:0.6f}] [batchtime {:0.3g}]')
msg = msg.format(
curr_epoch, i + 1, len(train_loader), train_main_loss.avg,
optim.param_groups[-1]['lr'], batchtime)
logx.msg(msg)
metrics = {'loss': train_main_loss.avg,
'lr': optim.param_groups[-1]['lr']}
curr_iter = curr_epoch * len(train_loader) + i
logx.metric('train', metrics, curr_iter)
loss_metric['epoch'].append(curr_epoch)
loss_metric['loss'].append(train_main_loss.avg)
loss_metric['lr'].append(optim.param_groups[-1]['lr'])
if i >= 10 and args.test_mode:
del data, inputs, gts
return
del data
def validate(val_loader, net, criterion, optim, epoch,
calc_metrics=True,
dump_assets=False, dump_all_images=False, testing=None):
"""
Run validation for one epoch
:val_loader: data loader for validation
:net: the network
:criterion: loss fn
:optimizer: optimizer
:epoch: current epoch
:calc_metrics: calculate validation score
:dump_assets: dump attention prediction(s) images
:dump_all_images: dump all images, not just N
:testing: run inference on a folder of images
"""
dumper = ImageDumper(val_len=len(val_loader),
dump_all_images=dump_all_images,
dump_assets=dump_assets,
dump_for_auto_labelling=args.dump_for_auto_labelling,
dump_for_submission=args.dump_for_submission)
net.eval()
val_loss = AverageMeter()
iou_acc = 0
pred = dict()
_temp = dict.fromkeys([i for i in range(10)], None)
for val_idx, data in enumerate(val_loader):
input_images, labels, img_names, _ = data
if args.dump_for_auto_labelling or args.dump_for_submission:
submit_fn = '{}.png'.format(img_names[0])
if val_idx % 20 == 0:
logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')
if os.path.exists(os.path.join(dumper.save_dir, submit_fn)):
continue
# Run network
assets, _iou_acc = \
eval_minibatch(data, net, criterion, val_loss, calc_metrics,
args, val_idx)
iou_acc += _iou_acc
input_images, labels, img_names, _ = data
if testing:
prediction = assets['predictions'][0]
values, counts = np.unique(prediction, return_counts=True)
pred[img_names[0]]=copy.copy(_temp)
for v in range(len(values)):
pred[img_names[0]][values[v]]=counts[v]
# pred.update({img_names[0]: dict(zip(values, counts))})
dumper.dump({'gt_images': labels,'input_images': input_images,'img_names': img_names, 'assets': assets}, val_idx, testing=True)
else:
dumper.dump({'gt_images': labels,
'input_images': input_images,
'img_names': img_names,
'assets': assets}, val_idx)
if val_idx > 5 and args.test_mode:
break
if val_idx % 20 == 0:
logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')
was_best = False
if calc_metrics:
was_best = eval_metrics(iou_acc, args, net, optim, val_loss, epoch)
# Write out a summary html page and tensorboard image table
if not args.dump_for_auto_labelling and not args.dump_for_submission:
dumper.write_summaries(was_best)
if testing:
time_suffix = datetime.datetime.now().strftime("%d-%m-%Y_%H-%M")
df = pd.DataFrame.from_dict(pred, orient='index')
df_p = df.div(df.sum(axis=1), axis=0)
df_p.to_csv(os.path.join(dumper.save_dir,f'freq_{time_suffix}.csv'), mode = 'a+', header=[str(i) for i in range(10)])
if __name__ == '__main__':
main()