-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmecrf_ner.py
445 lines (387 loc) · 16.6 KB
/
mecrf_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
import numpy as np
from six.moves import range
from itertools import chain
import logging
import sys
import time
from mecrf_ner_cell import MemoryNetworkNERCell
def zero_nil_slot(t, name=None):
"""
Overwrites the nil_slot (first row) of the input Tensor with zeros.
The nil_slot is a dummy slot and should not be trained and influence
the training algorithm.
"""
with tf.name_scope(values=[t], name=name, default_name="zero_nil_slot") as name:
t = tf.convert_to_tensor(t, name="t")
s = tf.shape(t)[1]
z = tf.zeros(tf.stack(values=[1, s]))
return tf.concat(axis=0, values=[z, tf.slice(t, [1, 0], [-1, -1])], name=name)
class MECRF(object):
"""MECRF."""
def __init__(
self,
batch_size,
vocab_size,
answer_size,
sentence_size,
memory_size,
embedding_size,
rnn_hidden_size=200,
mlp_hidden_size=64,
max_grad_norm=5.0,
initializer=tf.random_normal_initializer(stddev=0.1),
optimizer=tf.train.AdamOptimizer(learning_rate=1e-2),
session=None,
name='MECRF',
embedding_mat=None,
update_embeddings=False,
rnn_memory_hidden_size=200,
nonlin=tf.nn.tanh,
lexical_features_size=0,):
self._batch_size = batch_size
self._vocab_size = vocab_size
self._answer_size = answer_size
self._sentence_size = sentence_size
self._memory_size = memory_size
self._embedding_size = embedding_size
self._max_grad_norm = max_grad_norm
self._init = initializer
self._opt = optimizer
self._name = name
self._rnn_hidden_size = rnn_hidden_size
self._mlp_hidden_size = mlp_hidden_size
self._embedding_mat = embedding_mat
self._update_embeddings = update_embeddings
self._rnn_memory_hidden_size = rnn_memory_hidden_size
self._nonlin = nonlin
self._lexical_features_size = lexical_features_size
self._indices = tf.constant(
np.arange(self._sentence_size).reshape(1, self._sentence_size, 1),
dtype=tf.float32
) # [1, sentence_size, 1]
self._build_inputs()
self._build_vars()
# cross entropy
sent_lens, unary_scores, log_likelihood, transition_params, link_logits = self._inference(
self._memories,
self._sentences,
self._answers,
self._keep_prob,
self._mem_idx,
self._sent_lexical_features,
self._mem_lexical_features,
)
# mem_lens: [None]
# link_logits: [None, memory_size, memory_size + 1]
# loss op
nll = tf.negative(log_likelihood, name="negative_log_likelihood")
loss_op = tf.reduce_mean(nll)
# gradient pipeline
grads_and_vars = self._opt.compute_gradients(loss_op)
total_mem_usage = 0
grads_and_vars = filter(lambda x: x[0] is not None, grads_and_vars)
grads_and_vars = [(tf.clip_by_norm(g, self._max_grad_norm), v) for g,v in grads_and_vars]
nil_grads_and_vars = []
for g, v in grads_and_vars:
if v.name in self._nil_vars:
nil_grads_and_vars.append((zero_nil_slot(g), v))
else:
nil_grads_and_vars.append((g, v))
train_op = self._opt.apply_gradients(nil_grads_and_vars, name="train_op")
# sentences_len
self._sent_lens = sent_lens
# unary_scores
self._unary_scores_op = unary_scores
# transition_params_op
self._transition_params_op = transition_params
# link predictions
link_mask = tf.sequence_mask(
lengths=tf.reshape(self._mem_idx + 1, shape=[-1]),
maxlen=self._memory_size,
dtype=tf.float32,
name="link_mask_flattened"
)
link_mask = tf.reshape(
link_mask, shape=[-1, self._sentence_size, self._memory_size]
)
self._link_predict_op = tf.argmax(
input=link_mask * link_logits, dimension=2, name="link_predict_op"
)
self._link_predict_dist_op = link_mask * link_logits
# [None, sentence_size, memory_size]
# assign ops
self.loss_op = loss_op
self.train_op = train_op
init_op = tf.global_variables_initializer()
self._sess = session
self._sess.run(init_op)
def _build_inputs(self):
self._memories = tf.placeholder(
tf.int32, [None, self._memory_size], name="memories"
)
self._sentences = tf.placeholder(
tf.int32, [None, self._sentence_size], name="sentences"
)
self._answers = tf.placeholder(
tf.int32, [None, self._sentence_size], name="answers"
)
self._keep_prob = tf.placeholder(
tf.float32, [], name="keep_prob"
)
self._mem_idx = tf.placeholder(
tf.float32, [None, self._sentence_size], name="doc_start_index"
)
self._sent_lexical_features = tf.placeholder(
tf.float32, [None, self._sentence_size,
self._lexical_features_size],
name="sentence_lexical_features"
)
self._mem_lexical_features = tf.placeholder(
tf.float32, [None, self._memory_size, self._lexical_features_size],
name="memory_lexical_features"
)
def _build_vars(self):
with tf.variable_scope(self._name):
nil_word_slot = tf.zeros([1, self._embedding_size])
EMB = None
with tf.variable_scope("external_embedding") as emb_scope:
self._emb = tf.get_variable(
name="EMB",
shape=self._embedding_mat.shape,
dtype=tf.float32,
initializer=tf.constant_initializer(self._embedding_mat),
trainable=False,
)
embedding_feature_size = self._embedding_size + self._lexical_features_size
self._embedding_feature_size = embedding_feature_size
hidden_size = embedding_feature_size
self._hidden_size = hidden_size
if self._rnn_memory_hidden_size == 0:
self._rnn_memory_hidden_size = hidden_size
self._rnn_memory_Ws_shape = [
self._rnn_memory_hidden_size,
self._embedding_feature_size,
]
self._rnn_memory_bs_shape = [
1,
1,
self._embedding_feature_size,
]
hidden_output_size = self._embedding_feature_size
self.RNN = tf.Variable(
self._init([hidden_output_size, self._mlp_hidden_size]),
name="RNN"
)
self.RNN_b = tf.Variable(
self._init([1, 1, self._mlp_hidden_size]), name="RNN_b"
)
self.RNN2TAG = tf.Variable(
self._init([self._mlp_hidden_size, self._answer_size])
)
self.RNN2TAG_b = tf.Variable(self._init([1, 1, self._answer_size]))
self._nil_vars = set([self._emb.name])
def _tensor_dot(self, A, B):
batch_size = tf.shape(A)[0]
A_shape = A.get_shape().as_list()
B_shape = B.get_shape().as_list()
A_reshaped = tf.reshape(A, shape=[batch_size * A_shape[1], A_shape[2]])
dot_prod = tf.matmul(A_reshaped, B)
return tf.reshape(dot_prod, shape=[batch_size, A_shape[1], B_shape[1]])
def _seq_len(self, seq):
used = tf.sign(tf.abs(seq))
length = tf.reduce_sum(used, reduction_indices=1)
length = tf.cast(length, tf.int32)
return length
def _inference(self, memories, sentences, answers, keep_prob, mem_idx,
sent_lexical_features, mem_lexical_features):
with tf.variable_scope(self._name):
memory_rnn_cell_fw = tf.contrib.rnn.GRUCell(
self._rnn_memory_hidden_size
)
memory_rnn_cell_fw = tf.contrib.rnn.DropoutWrapper(
memory_rnn_cell_fw, input_keep_prob=keep_prob,
output_keep_prob=keep_prob
)
memory_rnn_cell_bw = tf.contrib.rnn.GRUCell(
self._rnn_memory_hidden_size
)
memory_rnn_cell_bw = tf.contrib.rnn.DropoutWrapper(
memory_rnn_cell_bw, input_keep_prob=keep_prob,
output_keep_prob=keep_prob
)
mem_len = self._seq_len(memories)
# [None]
sent_len = self._seq_len(sentences)
# [None]
sent_emb = tf.nn.embedding_lookup(self._emb, sentences)
# [None, sentence_size, emb_size]
# m_emb = tf.nn.embedding_lookup(self._weight_matrices[0], memories)
m_emb = tf.nn.embedding_lookup(self._emb, memories)
# [None, memory_size, emb_size]
c_emb = tf.nn.embedding_lookup(self._emb, memories)
# [None, memory_size, emb_size]
sent_emb = tf.concat(values=[sent_emb, sent_lexical_features], axis=2)
# [None, sentence_size, emb_size + lexical_features_size]
m_emb = tf.concat(values=[m_emb, mem_lexical_features], axis=2)
# [None, memory_size, emb_size + lexical_features_size]
c_emb = tf.concat(values=[c_emb, mem_lexical_features], axis=2)
# [None, memory_size, emb_size + lexical_features_size]
with tf.variable_scope("memory_rnn") as m_sentence_rnn_scope:
(m_rnn_fw, m_rnn_bw), (_, _) = tf.nn.bidirectional_dynamic_rnn(
memory_rnn_cell_fw,
memory_rnn_cell_bw,
m_emb,
dtype=tf.float32,
sequence_length=mem_len,
scope=m_sentence_rnn_scope,
swap_memory=True,
)
# m_rnn_f/bw: [None, memory_size, rnn_memory_hidden_size]
# m_rnn_state_f/bw: [None, rnn_memory_hidden_size]
Wm_memory_rnn_fw = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_Ws_shape,
name="W_memory_rnn_fw",
)
Wm_memory_rnn_bw = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_Ws_shape,
name="W_memory_rnn_bw",
)
bm_memory_rnn = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_bs_shape,
name="b_memory_rnn"
)
m_rnn_output = self._nonlin(
self._tensor_dot(m_rnn_fw, Wm_memory_rnn_fw)
+ self._tensor_dot(m_rnn_bw, Wm_memory_rnn_bw)
+ bm_memory_rnn
)
# [None, memory_size, emb_size]
m = m_rnn_output
# sent_emb: [None, sentence_size, emb_size]
W_sent_rnn_fw = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_Ws_shape,
name="W_sentence_rnn_fw",
)
W_sent_rnn_bw = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_Ws_shape,
name="W_sentence_rnn_bw",
)
b_sent_rnn = tf.get_variable(
initializer=self._init,
shape=self._rnn_memory_bs_shape,
name="b_sentence_rnn"
)
m_sentence_rnn_scope.reuse_variables()
(sent_rnn_fw, sent_rnn_bw), _ = tf.nn.bidirectional_dynamic_rnn(
memory_rnn_cell_fw,
memory_rnn_cell_bw,
sent_emb,
dtype=tf.float32,
sequence_length=sent_len,
scope=m_sentence_rnn_scope,
swap_memory=True,
)
# sent_rnn_f/bw: [None, memory_size, rnn_memory_hidden_size]
# sent_rnn_state_f/bw: [None, rnn_memory_hidden_size]
sent_rnn_output = self._nonlin(
self._tensor_dot(sent_rnn_fw, W_sent_rnn_fw)
+ self._tensor_dot(sent_rnn_bw, W_sent_rnn_bw)
+ b_sent_rnn
)
# [None, memory_size, emb_size]
sent_emb = sent_rnn_output
mem_rnn_cell = MemoryNetworkNERCell(
self._memory_size,
self._embedding_feature_size,
m,
m,
return_link=True,
)
mem_idx_expanded = tf.expand_dims(
input=mem_idx,
axis=-1,
name="doc_start_index_reshaped"
)
(mem_rnn_output, mem_rnn_link), mem_rnn_state = tf.nn.dynamic_rnn(
mem_rnn_cell,
tf.tuple([sent_emb, mem_idx_expanded]),
dtype=tf.float32,
sequence_length=sent_len
)
# mem_rnn_output: [None, max_seq_len, hidden_size]
# mem_rnn_link: [None, max_seq_len, max_seq_len]
# mem_rnn_state: [None, hidden_size]
rnn2mlp = self._tensor_dot(mem_rnn_output, self.RNN) + self.RNN_b
# [None, sentence_size, mlp_hidden_size]
mlp2tag = self._tensor_dot(rnn2mlp, self.RNN2TAG) + self.RNN2TAG_b
# [None, sentence_size, answer_size]
log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
mlp2tag, answers, sent_len)
return sent_len, mlp2tag, log_likelihood, transition_params, mem_rnn_link
def batch_fit(self, memories, sentences, answers, keep_prob, mem_idx,
sent_lexical_features, mem_lexical_features):
feed_dict = {
self._memories: memories,
self._sentences: sentences,
self._answers: answers,
self._keep_prob: keep_prob,
self._mem_idx: mem_idx,
self._sent_lexical_features: sent_lexical_features,
self._mem_lexical_features: mem_lexical_features
}
loss, _ = self._sess.run(
[self.loss_op, self.train_op], feed_dict=feed_dict
)
return loss
def _get_mini_batch_start_end(self, n_train, batch_size=None):
'''
Args:
n_train: int, number of training instances
batch_size: int (or None if full batch)
Returns:
batches: list of tuples of (start, end) of each mini batch
'''
mini_batch_size = n_train if batch_size is None else batch_size
batches = zip(
range(0, n_train, mini_batch_size),
list(range(mini_batch_size, n_train, mini_batch_size)) + [n_train]
)
return batches
def predict(self, memories, sentences, mem_idx, sent_lexical_features,
mem_lexical_features):
n_train = len(memories)
batches = self._get_mini_batch_start_end(n_train, self._batch_size)
unary_scores, transition_params, sentence_lens = [], None, []
for start, end in batches:
feed_dict = {
self._memories: memories[start:end],
self._sentences: sentences[start:end],
self._keep_prob: 1.0,
self._mem_idx: mem_idx[start:end],
self._sent_lexical_features: sent_lexical_features[start:end],
self._mem_lexical_features: mem_lexical_features[start:end]
}
uss, transition_params, sls = self._sess.run(
[self._unary_scores_op, self._transition_params_op, self._sent_lens],
feed_dict=feed_dict,
)
unary_scores.extend(uss)
sentence_lens.extend(sls)
predictions = []
for unary_score, seq_len in zip(unary_scores, sentence_lens):
# Remove padding from the scores and tag sequence.
us = unary_score[:seq_len]
# Compute the highest scoring sequence.
viterbi_sequence, _ = tf.contrib.crf.viterbi_decode(
us, transition_params
)
predictions.append(viterbi_sequence)
return predictions