-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmecrf_ner_cell.py
125 lines (101 loc) · 4.06 KB
/
mecrf_ner_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
'''
Created on 15Dec.,2016
@author: fei
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops.math_ops import sigmoid
from tensorflow.python.ops.math_ops import tanh
import numpy as np
import tensorflow as tf
import tensorflow
from tensorflow.contrib.rnn import LSTMStateTuple
from tensorflow.contrib.rnn import RNNCell
class MemoryNetworkNERCell(RNNCell):
def __init__(self, max_seq_len, emb_size, M, C, return_link=True):
self._max_seq_len = max_seq_len
self._emb_size = emb_size
self._padding = tf.zeros(shape=[1, 1, self._emb_size], dtype=tf.float32, name='padding')
self._return_link = return_link
self._M = M # [None, max_seq_len, hidden_size]
self._C = C # [None, max_seq_len, hidden_size]
@property
def state_size(self):
return self._emb_size
@property
def output_size(self):
if self._return_link:
return (LSTMStateTuple(self._emb_size, self._max_seq_len))
else:
return self._emb_size
def _memory_length(self, memory):
'''
memory: (None, self._memory_size, self._embedding_size)
'''
used = tf.sign(tf.reduce_max(tf.abs(memory), reduction_indices=2))
length = tf.reduce_sum(used, reduction_indices=1)
length = tf.cast(length, tf.int32)
return length
def _construct_current_memory(self, mem, idx):
'''
mem: [None, max_seq_len, emb_size]
idx: [None]
'''
mask = tf.sequence_mask(lengths=idx, maxlen=self._max_seq_len, dtype=tf.float32)
# [None, max_seq_len]
mask = tf.expand_dims(input=mask, axis=-1)
# [None, max_seq_len, 1]
assert_op1 = tf.Assert(tf.equal(self._max_seq_len, tf.shape(mem)[1]), [mem])
assert_op2 = tf.Assert(tf.equal(self._max_seq_len, tf.shape(mask)[1]), [mask])
with tf.control_dependencies([assert_op1, assert_op2]):
m = mem * mask
# [None, max_seq_len, emb_size]
return m
def _softmax_with_mask(self, u, mask):
'''
u: [None, memory_size]
mask: [None, memory_size]
'''
u_tmp = u - tf.reduce_max(u, 1, keep_dims=True)
# [None, memory_size]
exp_u_tmp = tf.exp(u_tmp)
# [None, memory_size]
masked_exp = exp_u_tmp * mask
# [None, memory_size]
sum_2d = tf.expand_dims(input=tf.reduce_sum(masked_exp, 1), axis=-1)
# [None, 1]
p = tf.div(masked_exp, sum_2d, name='p')
# [None, memory_size]
return p
def __call__(self, inputs, state, scope=None):
with vs.variable_scope(scope or type(self).__name__):
# "MemoryNetworkCell"
u, i = inputs
i = tf.cast(tf.reduce_sum(i, 1), dtype=tf.int32)
# u: [None, emb_size]
# i: [None], dtype=tf.int32
m = self._M
# [None, memory_size, emb_size]
c = self._C
# [None, memory_size, emb_size]
u_temp = tf.expand_dims(input=u, axis=1)
# [None, 1, emb_size]
dotted = tf.reduce_sum(m * u_temp, 2)
# [None, memory_size]
# Calculate probabilities
mem_mask = tf.sequence_mask(lengths=i + 1, maxlen=self._max_seq_len, dtype=tf.float32)
probs = self._softmax_with_mask(dotted, mem_mask)
# [None, memory_size]
probs_temp = tf.expand_dims(input=probs, axis=1)
# [None, 1, memory_size]
o_k = tf.reduce_sum(tf.matmul(probs_temp, c), 1)
# o_k: [None, emb_size]
u_out = u + o_k
if self._return_link:
return LSTMStateTuple(u_out, dotted), u_out
else:
return u_out, u_out