forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
boost_from_prediction.py
executable file
·26 lines (24 loc) · 1.02 KB
/
boost_from_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#!/usr/bin/python
import sys
import numpy as np
sys.path.append('../../wrapper')
import xgboost as xgb
dtrain = xgb.DMatrix('../data/agaricus.txt.train')
dtest = xgb.DMatrix('../data/agaricus.txt.test')
watchlist = [(dtest,'eval'), (dtrain,'train')]
###
# advanced: start from a initial base prediction
#
print ('start running example to start from a initial prediction')
# specify parameters via map, definition are same as c++ version
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
# train xgboost for 1 round
bst = xgb.train( param, dtrain, 1, watchlist )
# Note: we need the margin value instead of transformed prediction in set_base_margin
# do predict with output_margin=True, will always give you margin values before logistic transformation
ptrain = bst.predict(dtrain, output_margin=True)
ptest = bst.predict(dtest, output_margin=True)
dtrain.set_base_margin(ptrain)
dtest.set_base_margin(ptest)
print ('this is result of running from initial prediction')
bst = xgb.train( param, dtrain, 1, watchlist )