-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from llm-efficiency-challenge/msaroufim/ethics
Justice Dataset
- Loading branch information
Showing
3 changed files
with
110 additions
and
90 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,90 +0,0 @@ | ||
|
||
entries: [ | ||
## Real | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=algebra,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=prealgebra,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=geometry,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=1,use_official_examples=True", priority: 2} | ||
{description: "math:model=text_code,subject=precalculus,level=1,use_official_examples=True", priority: 2} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=algebra,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=prealgebra,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=geometry,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=2,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=precalculus,level=2,use_official_examples=True", priority: 4} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=algebra,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=prealgebra,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=geometry,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=3,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=precalculus,level=3,use_official_examples=True", priority: 3} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=algebra,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=prealgebra,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=geometry,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=4,use_official_examples=True", priority: 4} | ||
{description: "math:model=text_code,subject=precalculus,level=4,use_official_examples=True", priority: 4} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=algebra,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=prealgebra,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=geometry,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=5,use_official_examples=True", priority: 3} | ||
{description: "math:model=text_code,subject=precalculus,level=5,use_official_examples=True", priority: 3} | ||
|
||
# With chain-of-thought prompting: | ||
{description: "math:model=text_code,subject=number_theory,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=algebra,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=prealgebra,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=geometry,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=1,use_chain_of_thought=True", priority: 2} | ||
{description: "math:model=text_code,subject=precalculus,level=1,use_chain_of_thought=True", priority: 2} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=algebra,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=prealgebra,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=geometry,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=2,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=precalculus,level=2,use_chain_of_thought=True", priority: 4} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=algebra,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=prealgebra,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=geometry,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=3,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=precalculus,level=3,use_chain_of_thought=True", priority: 3} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=algebra,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=prealgebra,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=geometry,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=4,use_chain_of_thought=True", priority: 4} | ||
{description: "math:model=text_code,subject=precalculus,level=4,use_chain_of_thought=True", priority: 4} | ||
|
||
{description: "math:model=text_code,subject=number_theory,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=intermediate_algebra,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=algebra,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=prealgebra,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=geometry,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=counting_and_probability,level=5,use_chain_of_thought=True", priority: 3} | ||
{description: "math:model=text_code,subject=precalculus,level=5,use_chain_of_thought=True", priority: 3} | ||
|
||
{description: "sam_sum:model=neurips/local,max_train_instances=3", priority: 1} | ||
{description: "ethics_utilitarianism:model=neurips/local", priority: 1} | ||
{description: "corr2cause:model=neurips/local", priority: 1} | ||
|
||
] | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import csv | ||
import os | ||
import random | ||
from typing import List, Dict, Any | ||
from helm.common.general import ensure_file_downloaded, ensure_directory_exists | ||
from .scenario import Scenario, Instance, Reference, ALL_SPLITS, CORRECT_TAG, VALID_SPLIT, Input, Output | ||
|
||
# TODO: Should I just get rid of the train/test split? | ||
|
||
class EthicsJusticeScenario(Scenario): | ||
"""Information on this class""" | ||
name = "ethics_justice" | ||
description = "Ethics Justice dataset" | ||
tags = ["classification"] | ||
DATASET_FILE_NAME = "justice_hard.csv" | ||
TRAIN_RATIO = 0.8 # 80% for training, 20% for validation | ||
TRAIN_SPLIT = "train" | ||
VALID_SPLIT = "valid" | ||
|
||
def download_dataset(self, output_path: str): | ||
"""Downloads Justice Dataset if not already present.""" | ||
# Define the target path for the dataset | ||
data_dir = os.path.join(output_path, "data") | ||
dataset_path = os.path.join(data_dir, self.DATASET_FILE_NAME) | ||
|
||
# Check if the dataset already exists | ||
if os.path.exists(dataset_path): | ||
print(f"The dataset '{self.DATASET_FILE_NAME}' already exists at '{dataset_path}'. Skipping download.") | ||
return | ||
|
||
# Download the raw data | ||
url = "https://gist.githubusercontent.com/msaroufim/1b9c298b5bbc8cf3cd379c5dc05a3998/raw/41cfe8da6ffafe473d91d1ae3e3fb1e927d09efa/justice_hard.csv" | ||
ensure_directory_exists(data_dir) | ||
ensure_file_downloaded(source_url=url, target_path=dataset_path) | ||
|
||
def load_dataset(self, output_path: str) -> List[Dict[str, Any]]: | ||
self.download_dataset(output_path) | ||
file_path = os.path.join(output_path, "data", self.DATASET_FILE_NAME) | ||
|
||
data = [] | ||
with open(file_path, encoding="utf-8") as f: | ||
csv_reader = csv.reader(f) | ||
next(csv_reader) # Skip the header row if it exists | ||
for row in csv_reader: | ||
label, scenario = row # Adjust the unpacking if the dataset format changes | ||
data_point = { | ||
"label": int(label), | ||
"input": scenario.strip() | ||
} | ||
data.append(data_point) | ||
random.seed(0) | ||
random.shuffle(data) | ||
return data | ||
|
||
def get_label(self, label: int) -> str: | ||
return "Unreasonable" if label == 0 else "Reasonable" | ||
|
||
def data_to_instance(self, data_point: Dict[str, Any], split: str, instance_id: str) -> Instance: | ||
input_text = Input(text=data_point["input"]) | ||
|
||
# Create references for both possible labels | ||
references = [ | ||
Reference(output=Output(text=self.get_label(0)), tags=[]), | ||
Reference(output=Output(text=self.get_label(1)), tags=[]) | ||
] | ||
|
||
# Assign the CORRECT_TAG to the correct choice | ||
for reference in references: | ||
if reference.output.text == self.get_label(data_point["label"]): | ||
reference.tags.append(CORRECT_TAG) | ||
|
||
return Instance( | ||
id=instance_id, input=input_text, references=references, split=split | ||
) | ||
|
||
def get_instances(self, output_path: str) -> List[Instance]: | ||
self.download_dataset(output_path) | ||
data = self.load_dataset(output_path) | ||
split_index = int(len(data) * self.TRAIN_RATIO) | ||
train_data = data[:split_index] | ||
valid_data = data[split_index:] | ||
|
||
train_instances = [self.data_to_instance(dp, self.TRAIN_SPLIT, f"id{i}") for i, dp in enumerate(train_data)] | ||
valid_instances = [self.data_to_instance(dp, self.VALID_SPLIT, f"id{i+len(train_data)}") for i, dp in enumerate(valid_data)] | ||
|
||
return train_instances + valid_instances | ||
|