-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #8 from llm-efficiency-challenge/msaroufim/util
Utilitarianism
- Loading branch information
Showing
3 changed files
with
101 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
entries: [ | ||
{description: "ethics_utilitarianism:model=neurips/local", priority: 1} | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
76 changes: 76 additions & 0 deletions
76
src/helm/benchmark/scenarios/ethics_utilitarianism_scenario.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import csv | ||
import os | ||
import random | ||
from typing import List, Dict, Any | ||
from helm.common.general import ensure_file_downloaded, ensure_directory_exists | ||
from .scenario import Scenario, Instance, Reference, ALL_SPLITS, CORRECT_TAG, VALID_SPLIT, Input, Output | ||
import random | ||
|
||
class EthicsUtilitarianismScenario(Scenario): | ||
"""Information on this class""" | ||
name = "ethics_utilitarianism" | ||
description = "Ethics Utilitarianism dataset" | ||
tags = ["classification"] | ||
DATASET_FILE_NAME = "util.csv" | ||
TRAIN_RATIO = 0.7 # 70% for training, 30% for validation | ||
TRAIN_SPLIT = "train" | ||
VALID_SPLIT = "valid" | ||
|
||
def download_dataset(self, output_path: str): | ||
"""Ethics utilitarianism dataset""" | ||
# Define the target path for the dataset | ||
data_dir = os.path.join(output_path, "data") | ||
dataset_path = os.path.join(data_dir, self.DATASET_FILE_NAME) | ||
|
||
# Check if the dataset already exists | ||
if os.path.exists(dataset_path): | ||
print(f"The dataset '{self.DATASET_FILE_NAME}' already exists at '{dataset_path}'. Skipping download.") | ||
return | ||
|
||
# Download the raw data | ||
url ="https://gist.githubusercontent.com/msaroufim/0fe76e3d59214bfe9cc760dda99df5b1/raw/c0983230762bdbc0a1f3c5873d3f6deb21d04cbe/util.csv" | ||
ensure_directory_exists(data_dir) | ||
ensure_file_downloaded(source_url=url, target_path=dataset_path) | ||
|
||
def load_dataset(self, output_path: str) -> List[Dict[str, Any]]: | ||
self.download_dataset(output_path) | ||
file_path = os.path.join(output_path, "data", self.DATASET_FILE_NAME) | ||
|
||
data = [] | ||
with open(file_path, encoding="utf-8") as f: | ||
csv_reader = csv.reader(f) | ||
next(csv_reader) # Skip the header row if it exists | ||
for row in csv_reader: | ||
scenario_1, scenario_2, label = row | ||
data_point = { | ||
"input": f"Scenario 1: {scenario_1.strip()}\nScenario 2: {scenario_2.strip()}", | ||
"label" : int(label), | ||
} | ||
data.append(data_point) | ||
random.seed(0) | ||
random.shuffle(data) | ||
return data | ||
|
||
def data_to_instance(self, data_point: Dict[str, Any], split: str, instance_id: str) -> Instance: | ||
input_text = Input(text=data_point["input"]) | ||
|
||
references = [] | ||
for i in range(2): | ||
references.append(Reference(output=Output(text=f"Scenario {i + 1}"), tags=[CORRECT_TAG] if data_point["label"] == i else [])) | ||
|
||
return Instance( | ||
input=input_text, references=references, split=split | ||
) | ||
|
||
|
||
def get_instances(self, output_path: str) -> List[Instance]: | ||
self.download_dataset(output_path) | ||
data = self.load_dataset(output_path) | ||
split_index = int(len(data) * self.TRAIN_RATIO) | ||
train_data = data[:split_index] | ||
valid_data = data[split_index:] | ||
|
||
train_instances = [self.data_to_instance(dp, self.TRAIN_SPLIT, f"id{i}") for i, dp in enumerate(train_data)] | ||
valid_instances = [self.data_to_instance(dp, self.VALID_SPLIT, f"id{i+len(train_data)}") for i, dp in enumerate(valid_data)] | ||
|
||
return train_instances + valid_instances |