Check out our Blocks Directory for a full list of data blocks and use cases
Start Modeling by reading through this discourse post.
Looker has created this block to make analyzing data easier and more efficient. This Data Block is made available on an "as is" basis, meaning there will not be updates moving forward. Looker can not represent or warrant that this data will be accurate, reliable, or error-free. Please consult the documented data source sites for details on how their data is being collected and how to interpret it.
Use the following DDL statements as a reference and starting point for uploading our datasets into your own DB.
Note: Our DDL statments follow Amazon Redshift syntax. You may need to adjust data types and other fields as necessary for your dialect.
(jump) Working with Redshift? Refer to our steps below.
CREATE TABLE zcta_distances(
zip1 VARCHAR PRIMARY KEY
,zip2 VARCHAR
,mi_to_zcta5 NUMERIC(16,13)
);
CREATE TABLE zcta_to_tract_w_state(
ZCTA5 VARCHAR
,STATE VARCHAR(30)
,COUNTY VARCHAR(3)
,TRACT BIGINT
,GEOID BIGINT
,POPPT BIGINT
,HUPT BIGINT
,AREAPT BIGINT
,_AREALANDPT BIGINT
,ZPOP BIGINT
,ZHU BIGINT
,ZAREA BIGINT
,ZAREALAND BIGINT
,TRPOP BIGINT
,TRHU BIGINT
,TRAREA BIGINT
,TRAREALAND BIGINT
,ZPOPPCT NUMERIC(5,2)
,ZHUPCT NUMERIC(5,2)
,ZAREAPCT NUMERIC(5,2)
,ZAREALANDPCT NUMERIC(5,2)
,TRPOPPCT NUMERIC(5,2)
,TRHUPCT NUMERIC(5,2)
,TRAREAPCT NUMERIC(5,2)
,TRAREALANDPCT NUMERIC(5,2)
,state_name VARCHAR(30)
,fips INTEGER
,state_abbreviation VARCHAR(2)
);
CREATE TABLE fast_facts(
logrecno_bg_map_block_group VARCHAR(12) PRIMARY KEY
,total_population INTEGER
,housing_units INTEGER
,female INTEGER
,male INTEGER
,white_alone_or_in_combo INTEGER
,black_alone_or_in_combo INTEGER
,amind_alone_or_in_combo INTEGER
,asian_alone_or_in_combo INTEGER
,nat_haw_alone_or_in_combo INTEGER
,hispanic_or_latino INTEGER
,white_non_hisp INTEGER
,under_18 INTEGER
,eighteen_to_64 INTEGER
,sixty_five_and_over INTEGER
,aggregate_income INTEGER
);
CREATE TABLE geo2015(
FILEID VARCHAR(5) PRIMARY KEY
,STUSAB VARCHAR(2)
,SUMLEVEL INTEGER
,COMPONENT VARCHAR(4)
,LOGRECNO INTEGER
,US VARCHAR(30)
,REGION VARCHAR(30)
,DIVISION VARCHAR(30)
,STATECE VARCHAR(30)
,STATE VARCHAR(30)
,COUNTY VARCHAR(30)
,COUSUB VARCHAR(30)
,PLACE VARCHAR(30)
,TRACT VARCHAR(30)
,BLKGRP VARCHAR(30)
,CONCIT VARCHAR(30)
,AIANHH VARCHAR(30)
,AIANHHFP VARCHAR(30)
,AIHHTLI VARCHAR(30)
,AITSCE VARCHAR(30)
,AITS VARCHAR(30)
,ANRC VARCHAR(30)
,CBSA INTEGER
,CSA INTEGER
,METDIV VARCHAR(30)
,MACC VARCHAR(30)
,MEMI VARCHAR(30)
,NECTA VARCHAR(30)
,CNECTA VARCHAR(30)
,NECTADIV VARCHAR(30)
,UA INTEGER
,BLANK1 VARCHAR(30)
,CDCURR VARCHAR(30)
,SLDU VARCHAR(30)
,SLDL VARCHAR(30)
,BLANK2 VARCHAR(30)
,BLANK3 VARCHAR(30)
,ZCTA5 VARCHAR
,SUBMCD VARCHAR(30)
,SDELM VARCHAR(30)
,SDSEC VARCHAR(30)
,SDUNI VARCHAR(30)
,UR VARCHAR(30)
,PCI VARCHAR(30)
,BLANK4 VARCHAR(30)
,BLANK5 VARCHAR(30)
,PUMA5 VARCHAR(30)
,BLANK6 VARCHAR(30)
,GEOID VARCHAR(30)
,NAME VARCHAR
,BTTR VARCHAR(30)
,BTBG VARCHAR(30)
,BLANK7 VARCHAR(30)
);
CREATE TABLE block_group_attribs(
STATEFP VARCHAR(30)
,COUNTYFP VARCHAR(3)
,TRACTCE VARCHAR(30)
,BLKGRPCE VARCHAR(30)
,GEOID BIGINT
,NAMELSAD VARCHAR(30)
,MTFCC VARCHAR(50)
,FUNCSTAT VARCHAR(2)
,ALAND BIGINT
,AWATER BIGINT
,INTPTLAT FLOAT
,INTPTLON FLOAT
);
COPY zcta_distances
FROM 's3://looker-datablocks/acs_fast_facts/zcta_distances/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
COPY zcta_to_tract_w_state
FROM 's3://looker-datablocks/acs_fast_facts/zcta_to_tract_w_state/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
COPY fast_facts
FROM 's3://looker-datablocks/acs_fast_facts/fast_facts/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
COPY geo2015
FROM 's3://looker-datablocks/acs_fast_facts/geo_2015/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
COPY block_group_attribs
FROM 's3://looker-datablocks/acs_fast_facts/block_group_attribs/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
Using Redshift? These instructions are for uploading the ACS dataset into your Redshift database. Note: if you already have an AWS IAM user with the proper policy you may skip step 1.
- (jump) In your AWS console, apply our policy to your IAM user and grab the IAM access key ID and secret access key (this will be used in the authorization/credentials piece of the
copy
command in step 3) - (jump) Create tables in Redshift
- (jump) Copy data to Redshift from Looker’s S3 bucket
- (jump) Add LookML files to your Looker project
If you don't already have an IAM user with an access key and secret access key, you will need to create one in the AWS console.
Once the user is created, you will be provided with an Access Key ID and Secret Access Key. Write these down for later - the secret key will be shown only once. More information on access keys here.
Next you will need to add our policy to your IAM user to allow the user to copy data from the Looker S3 bucket. You can copy the policy directly from here:
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "Stmt1507928463000",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
"arn:aws:s3:::looker-datablocks",
"arn:aws:s3:::looker-datablocks/*"
]
}
]
}
Run the following create table
commands in Redshift. Refer above to the full list of tables that you may need to define.
CREATE TABLE fast_facts(
logrecno_bg_map_block_group VARCHAR(12) PRIMARY KEY
,total_population INTEGER
,housing_units INTEGER
,female INTEGER
,male INTEGER
,white_alone_or_in_combo INTEGER
,black_alone_or_in_combo INTEGER
,amind_alone_or_in_combo INTEGER
,asian_alone_or_in_combo INTEGER
,nat_haw_alone_or_in_combo INTEGER
,hispanic_or_latino INTEGER
,white_non_hisp INTEGER
,under_18 INTEGER
,eighteen_to_64 INTEGER
,sixty_five_and_over INTEGER
,aggregate_income INTEGER
);
Run the following copy
commands in Redshift. Refer above to the full list of copy commands to be added.
Note: you will need to add your aws_access_key_id and aws_secret_access_key from step 1 into each of the statements
COPY fast_facts
FROM 's3://looker-datablocks/acs_fast_facts/fast_facts/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>' -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;
- Copy the LookML files from this repo (or download here)
- Add the files to your Looker project (prefixed with
rs
) - Change the
connection
parameter in the model file to your Redshift connection
Now you're ready to explore ACS data and combine with your other datasets!