Skip to content

Latest commit

 

History

History
288 lines (242 loc) · 9.81 KB

readme.md

File metadata and controls

288 lines (242 loc) · 9.81 KB

Get Started

Check out our Blocks Directory for a full list of data blocks and use cases

Start Modeling by reading through this discourse post.

Looker has created this block to make analyzing data easier and more efficient. This Data Block is made available on an "as is" basis, meaning there will not be updates moving forward. Looker can not represent or warrant that this data will be accurate, reliable, or error-free. Please consult the documented data source sites for details on how their data is being collected and how to interpret it.

DDL Statements

Use the following DDL statements as a reference and starting point for uploading our datasets into your own DB.

Note: Our DDL statments follow Amazon Redshift syntax. You may need to adjust data types and other fields as necessary for your dialect.

(jump) Working with Redshift? Refer to our steps below.

Schema

CREATE TABLE zcta_distances(
   zip1        VARCHAR  PRIMARY KEY
  ,zip2        VARCHAR
  ,mi_to_zcta5 NUMERIC(16,13)
);

CREATE TABLE zcta_to_tract_w_state(
   ZCTA5              VARCHAR
  ,STATE              VARCHAR(30)
  ,COUNTY             VARCHAR(3)
  ,TRACT              BIGINT
  ,GEOID              BIGINT
  ,POPPT              BIGINT
  ,HUPT               BIGINT
  ,AREAPT             BIGINT
  ,_AREALANDPT        BIGINT
  ,ZPOP               BIGINT
  ,ZHU                BIGINT
  ,ZAREA              BIGINT
  ,ZAREALAND          BIGINT
  ,TRPOP              BIGINT
  ,TRHU               BIGINT
  ,TRAREA             BIGINT
  ,TRAREALAND         BIGINT
  ,ZPOPPCT            NUMERIC(5,2)
  ,ZHUPCT             NUMERIC(5,2)
  ,ZAREAPCT           NUMERIC(5,2)
  ,ZAREALANDPCT       NUMERIC(5,2)
  ,TRPOPPCT           NUMERIC(5,2)
  ,TRHUPCT            NUMERIC(5,2)
  ,TRAREAPCT          NUMERIC(5,2)
  ,TRAREALANDPCT      NUMERIC(5,2)
  ,state_name         VARCHAR(30)
  ,fips               INTEGER
  ,state_abbreviation VARCHAR(2)
);

CREATE TABLE fast_facts(
   logrecno_bg_map_block_group VARCHAR(12) PRIMARY KEY
  ,total_population            INTEGER
  ,housing_units               INTEGER
  ,female                      INTEGER
  ,male                        INTEGER
  ,white_alone_or_in_combo     INTEGER
  ,black_alone_or_in_combo     INTEGER
  ,amind_alone_or_in_combo     INTEGER
  ,asian_alone_or_in_combo     INTEGER
  ,nat_haw_alone_or_in_combo   INTEGER
  ,hispanic_or_latino          INTEGER
  ,white_non_hisp              INTEGER
  ,under_18                    INTEGER
  ,eighteen_to_64              INTEGER
  ,sixty_five_and_over         INTEGER
  ,aggregate_income            INTEGER
);

CREATE TABLE geo2015(
   FILEID    VARCHAR(5) PRIMARY KEY
  ,STUSAB    VARCHAR(2)
  ,SUMLEVEL  INTEGER
  ,COMPONENT VARCHAR(4)
  ,LOGRECNO  INTEGER
  ,US        VARCHAR(30)
  ,REGION    VARCHAR(30)
  ,DIVISION  VARCHAR(30)
  ,STATECE   VARCHAR(30)
  ,STATE     VARCHAR(30)
  ,COUNTY    VARCHAR(30)
  ,COUSUB    VARCHAR(30)
  ,PLACE     VARCHAR(30)
  ,TRACT     VARCHAR(30)
  ,BLKGRP    VARCHAR(30)
  ,CONCIT    VARCHAR(30)
  ,AIANHH    VARCHAR(30)
  ,AIANHHFP  VARCHAR(30)
  ,AIHHTLI   VARCHAR(30)
  ,AITSCE    VARCHAR(30)
  ,AITS      VARCHAR(30)
  ,ANRC      VARCHAR(30)
  ,CBSA      INTEGER
  ,CSA       INTEGER
  ,METDIV    VARCHAR(30)
  ,MACC      VARCHAR(30)
  ,MEMI      VARCHAR(30)
  ,NECTA     VARCHAR(30)
  ,CNECTA    VARCHAR(30)
  ,NECTADIV  VARCHAR(30)
  ,UA        INTEGER
  ,BLANK1    VARCHAR(30)
  ,CDCURR    VARCHAR(30)
  ,SLDU      VARCHAR(30)
  ,SLDL      VARCHAR(30)
  ,BLANK2    VARCHAR(30)
  ,BLANK3    VARCHAR(30)
  ,ZCTA5     VARCHAR
  ,SUBMCD    VARCHAR(30)
  ,SDELM     VARCHAR(30)
  ,SDSEC     VARCHAR(30)
  ,SDUNI     VARCHAR(30)
  ,UR        VARCHAR(30)
  ,PCI       VARCHAR(30)
  ,BLANK4    VARCHAR(30)
  ,BLANK5    VARCHAR(30)
  ,PUMA5     VARCHAR(30)
  ,BLANK6    VARCHAR(30)
  ,GEOID     VARCHAR(30)
  ,NAME      VARCHAR
  ,BTTR      VARCHAR(30)
  ,BTBG      VARCHAR(30)
  ,BLANK7    VARCHAR(30)
);

CREATE TABLE block_group_attribs(
   STATEFP      VARCHAR(30)
   ,COUNTYFP    VARCHAR(3)
   ,TRACTCE     VARCHAR(30)
   ,BLKGRPCE    VARCHAR(30)
   ,GEOID       BIGINT
   ,NAMELSAD    VARCHAR(30)
   ,MTFCC       VARCHAR(50)
   ,FUNCSTAT    VARCHAR(2)
   ,ALAND       BIGINT
   ,AWATER      BIGINT
   ,INTPTLAT    FLOAT
   ,INTPTLON    FLOAT
);

Copy Data from S3

COPY zcta_distances
FROM 's3://looker-datablocks/acs_fast_facts/zcta_distances/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

COPY zcta_to_tract_w_state
FROM 's3://looker-datablocks/acs_fast_facts/zcta_to_tract_w_state/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

COPY fast_facts
FROM 's3://looker-datablocks/acs_fast_facts/fast_facts/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

COPY geo2015
FROM 's3://looker-datablocks/acs_fast_facts/geo_2015/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

COPY block_group_attribs
FROM 's3://looker-datablocks/acs_fast_facts/block_group_attribs/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

datablocks-acs-redshift

Using Redshift? These instructions are for uploading the ACS dataset into your Redshift database. Note: if you already have an AWS IAM user with the proper policy you may skip step 1.

Overall Steps:

  1. (jump) In your AWS console, apply our policy to your IAM user and grab the IAM access key ID and secret access key (this will be used in the authorization/credentials piece of the copy command in step 3)
  2. (jump) Create tables in Redshift
  3. (jump) Copy data to Redshift from Looker’s S3 bucket
  4. (jump) Add LookML files to your Looker project

Step 1: Add Policy to IAM User and Get Access Key

If you don't already have an IAM user with an access key and secret access key, you will need to create one in the AWS console.

iam

Once the user is created, you will be provided with an Access Key ID and Secret Access Key. Write these down for later - the secret key will be shown only once. More information on access keys here.

iam

Next you will need to add our policy to your IAM user to allow the user to copy data from the Looker S3 bucket. You can copy the policy directly from here:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Stmt1507928463000",
            "Effect": "Allow",
            "Action": [
                "s3:GetObject",
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::looker-datablocks",
                "arn:aws:s3:::looker-datablocks/*"
            ]
        }
    ]
}

iam iam

Step 2: Create Tables in Redshift

Run the following create table commands in Redshift. Refer above to the full list of tables that you may need to define.

CREATE TABLE fast_facts(
   logrecno_bg_map_block_group VARCHAR(12) PRIMARY KEY
  ,total_population            INTEGER
  ,housing_units               INTEGER
  ,female                      INTEGER
  ,male                        INTEGER
  ,white_alone_or_in_combo     INTEGER
  ,black_alone_or_in_combo     INTEGER
  ,amind_alone_or_in_combo     INTEGER
  ,asian_alone_or_in_combo     INTEGER
  ,nat_haw_alone_or_in_combo   INTEGER
  ,hispanic_or_latino          INTEGER
  ,white_non_hisp              INTEGER
  ,under_18                    INTEGER
  ,eighteen_to_64              INTEGER
  ,sixty_five_and_over         INTEGER
  ,aggregate_income            INTEGER
);

Step 3: Copy Data to Redshift from Looker's S3 Bucket

Run the following copy commands in Redshift. Refer above to the full list of copy commands to be added. Note: you will need to add your aws_access_key_id and aws_secret_access_key from step 1 into each of the statements

COPY fast_facts
FROM 's3://looker-datablocks/acs_fast_facts/fast_facts/'
CREDENTIALS 'aws_access_key_id=<aws_access_key_id>;aws_secret_access_key=<aws_secret_access_key>'  -- replace with access key and secret key from step 1
REGION 'us-east-1'
IGNOREHEADER as 1
CSV;

Step 4: Add LookML Files to your Looker Project

  • Copy the LookML files from this repo (or download here)
  • Add the files to your Looker project (prefixed with rs)
  • Change the connection parameter in the model file to your Redshift connection

looker

Now you're ready to explore ACS data and combine with your other datasets! looker