forked from kevinlisun/clothes_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoding_main_script.m
132 lines (116 loc) · 4.06 KB
/
coding_main_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
warning off
clear all
close all
clc
flag = true;
para.bsp = 1;
para.finddd = 0;
para.lbp = 0;
para.sc = 0;
para.dlcm = 0;
para.sift = 0;
is_norm = 1;
addpath('./BSplineFitting');
addpath('./LLC');
addpath('./SurfaceFeature');
addpath('./Functions');
addpath('./FINDDD');
addpath(genpath([pwd,'/GPML']));
addpath('./ShapeContent');
addpath('./Utilities');
addpath('./vlfeat/toolbox');
vl_setup
startup
%% script setting
% the file is start with date to distinguish
flile_header = 'clothes_dataset_RH';
%create firectory
dataset_dir = ['~/',flile_header];
% clothes is the number of flattening experiments, n_iteration is the
% number of flattening iteration in each experiment [1:7,10:12,15:16]
clothes = [1:50];
captures = 0:20;
kofkmeans = 256;
coding_opt = 'LLC'
pooling_opt = 'sum'
knn = 5
%% read code book
codebook_dir = [dataset_dir,'/Codebook/'];
load([codebook_dir,'code_book',num2str(kofkmeans),'.mat']);
%% main loop
for iter_i = 1:length(clothes)
clothes_i = clothes(iter_i);
disp(['start read descriptors of clothes id: ', num2str(clothes_i), ' ...']);
if clothes_i < 10
current_dir = strcat(dataset_dir,'/0',num2str(clothes_i),'/');
else
current_dir = strcat(dataset_dir,'/',num2str(clothes_i),'/');
end
% feature extraction
for iter_j = 1:length(captures)
capture_i = captures(iter_j);
% read features from the disk
featureFile = strcat(current_dir,'Features/local_descriptors_capture',num2str(capture_i),'.mat');
if ~exist(featureFile,'file')
continue;
end
load(featureFile);
%% coding
if para.bsp
if strcmp(coding_opt,'BOW')
[ code.bsp ] = Coding( local_descriptors.bsp, code_book.bsp, is_norm );
end
if strcmp(coding_opt,'LLC')
code.bsp = LLC_pooling( local_descriptors.bsp, code_book.bsp, code_book.bsp_weights, knn, pooling_opt );
end
end
if para.finddd
if strcmp(coding_opt,'BOW')
[ code.finddd ] = Coding( local_descriptors.finddd, code_book.finddd, is_norm );
end
if strcmp(coding_opt,'LLC')
code.finddd = LLC_pooling( local_descriptors.finddd, code_book.finddd, code_book.bsp_weights, knn, pooling_opt );
end
end
if para.lbp
if strcmp(coding_opt,'BOW')
[ code.lbp ] = Coding( local_descriptors.lbp, code_book.lbp, is_norm );
end
if strcmp(coding_opt,'LLC')
code.lbp = LLC_pooling( local_descriptors.lbp, code_book.lbp,code_book.bsp_weights, knn, pooling_opt );
end
end
if para.sc
if strcmp(coding_opt,'BOW')
[ code.sc ] = Coding( local_descriptors.sc, code_book.sc, is_norm );
end
if strcmp(coding_opt,'LLC')
code.sc = LLC_pooling( local_descriptors.sc, code_book.sc, code_book.bsp_weights, knn, pooling_opt );
end
end
if para.dlcm
if strcmp(coding_opt,'BOW')
[ code.dlcm ] = Coding( local_descriptors.dlcm, code_book.dlcm, is_norm );
end
if strcmp(coding_opt,'LLC')
code.dlcm = LLC_pooling( local_descriptors.dlcm, code_book.dlcm, code_book.bsp_weights, knn, pooling_opt );
end
end
if para.sift
if strcmp(coding_opt,'BOW')
[ code.sift ] = Coding( local_descriptors.sift, code_book.sift, is_norm );
end
if strcmp(coding_opt,'LLC')
code.sift = LLC_pooling( local_descriptors.sift, code_book.sift, code_book.bsp_weights, knn, pooling_opt );
end
end
code_dir = [ current_dir, 'Codes' ];
if ~exist(code_dir,'dir')
mkdir(code_dir);
end
save([code_dir,'/',coding_opt,'_codes_capture',num2str(capture_i),'.mat'],'code')
clear code;
end
%%
disp(['fininsh coding of clothing ', num2str(clothes_i), ' ...']);
end