forked from kevinlisun/clothes_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_lgsr.m
129 lines (106 loc) · 3.81 KB
/
evaluate_lgsr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [best_result1, best_result2] = evaluate_lgsr(collecton_video, Label, vector_train, vector_test, type_distance)
% nCollection=17;
% nC=17;
addpath('./LLC');
addpath('./drtoolbox');
addpath('./drtoolbox/techniques');
%% read code book
current_dir='~/bags';
codebook_dir = [current_dir,'/Features/'];
kofkmeans = 256;
pooling_opt = 'sum';
knn = 10;
load([codebook_dir,'code_book',num2str(kofkmeans),'.mat']);
% LLC al conjunto de caracteristicas del video, reduciendolo a 10, es el mejor resultado encontrado
% collecton_video_llc=[];
% [nC, collection_frames, feats] = size(collecton_video);
% for i=1:nC
% % i
% X = reshape(collecton_video(i,:,:), [collection_frames feats]);
% [mappedXllc, mapping] = compute_mapping(X, 'Autoencoder',500);
% % size(X)
% % [mappedXllc, mapping] = compute_mapping(X, 'LLC',400);
% % mappedXllc= [mappedXpca; mappedXllc] ;
% % size(mappedXllc)
% mappedXllc = reshape(mappedXllc, [1 collection_frames 500]);
% collecton_video_llc(i,:,:) = mappedXllc;
% end
% collecton_video = collecton_video_llc;
[nC, collection_frames, feats] = size(collecton_video);
n_class = length(unique(Label));
conf_matrix = zeros(n_class,n_class);
conf_matrix2 = zeros(n_class,n_class);
collecton_video_sub = collecton_video(vector_train,:,:) ;
Label_sub = Label(vector_train,:,:) ;
% r1 =[4 6 12 15 19 23 26 32 39 45 48 52 58 62 67 70]; %randi(nC,30,1);
% for id=1:length(r1)
for id=1:length(vector_test)
% i
i = vector_test(id);
id_c = Label (int8(i));
Y = collecton_video(i,:,:);
% collecton_video_sub =[];
% Label_sub =[];
% if i > 1
% collecton_video_sub = [collecton_video(1:i-1,:,:) ; collecton_video(i+1:nC,:,:) ];
% Label_sub = [Label(1:i-1,:,:) ; Label(i+1:nC,:,:) ];
% else
% collecton_video_sub = collecton_video(i+1:nC,:,:) ;
% Label_sub = Label(i+1:nC,:,:) ;
% end
[nC2, collection_frames, feats] = size(collecton_video_sub);
ST = LGSR(Y, collecton_video_sub, type_distance);
Y = reshape(Y, [collection_frames feats]);
Lc = zeros(nC2, 1);
Qc = zeros(nC2, 1);
for c=1:nC2
X = reshape(collecton_video_sub(c,:,:),[collection_frames feats]);
STtmp = reshape(ST(c,:,:),[collection_frames collection_frames]);
% STtmp
xst = (X'*STtmp)';
Lc(c,1) = 0.5*norm( (Y - xst ) ,'inf'); % max(svd((Y - xst ) ) ) ;
Qc(c,1) = norm( STtmp,'inf') / norm( (Y - xst ) ,'inf'); %max(svd(STtmp) ) /max(svd( (Y - xst )) );
end
[a,idmin]= min(Lc);
[amax,idmax]= max(Qc);
[B,I] = sort(Lc);
% id_c
% Lc
% % idmin
% % idmax
knn = 10;
% if Label_sub (idmin) == 5
conf_matrix ( id_c, Label_sub (int8 (idmin) ) ) = conf_matrix (id_c, Label_sub (idmin) ) + 1;
% else
% % B(1:5)
% C=Label_sub (I);
% % C(1:5)
% % C=Label_sub (I);
% % best_weight = 0;
% % best_label = 0;
% % best_n = 0;
% % for j = 1:4
% % id_knn = find(C(1:knn) == j);
% % if length( id_knn) > best_n || ( (length( id_knn) == best_n) && (B(id_knn) < best_weight) )
% % best_n = length(id_knn );
% % best_label = j;
% % best_weight = B(id_knn);
% % end
% % end
% % best_label
% % p = best_label;%mode (C(1:knn));
% p = mode (C(1:knn));
% %TODO AGregar filtar por peso cuando hay dos modas ... para eso B(1:knn) tiene los pesos e I el orden
% conf_matrix ( id_c, p ) = conf_matrix (id_c, p) + 1;
% end
conf_matrix2 ( id_c, Label_sub (int8 (idmax) ) ) = conf_matrix2 (id_c, Label_sub (idmax) ) + 1;
% best_result1 = sum (diag(conf_matrix)) / sum(sum(conf_matrix));
% best_result2 = sum (diag(conf_matrix2)) / sum(sum(conf_matrix2));
% disp([num2str(i), ': ',num2str(best_result1), ' - ' num2str(best_result2)])
end
best_result1 = sum (diag(conf_matrix)) / sum(sum(conf_matrix));
conf_matrix;
best_result2 = sum (diag(conf_matrix2)) / sum(sum(conf_matrix2));
disp([num2str(best_result1), ' - ' num2str(best_result2)])
% conf_matrix2
% best_result = max (best_result1, best_result2);