Functions and methods for calculating physical and chemical characteristic parameters in a body of water. It includes water density based on temperature, relative thermal resistance and others.
- Installation
- Estimate Electroconductivity to Dissolved Total Solids
- Estimate Electrical Conductivity
- Relative Thermal Resistance to Mixing
- Calculate the Schmidt Stability Index
- Estimate Water Density
devtools::install_github("salah31416/RLimnology")
## estimate 10 muS/cm EC to TDS
ec2tds(10)
#[1] 6.4
ions = data.frame(
Ca = c(85, 0.85, 0.085),
Mg = c(43.0, 0.43, 0.043),
K = c(2.9, 0.029, 0.0029),
Na = c(92.0, 0.92, 0.092),
HCO3 = c(362.0, 3.62, 0.362),
Cl = c(131.0, 1.31, 0.131),
SO4 = c(89.0, 0.89, 0.089),
NO3 = c(20.0, 0.2, 0.02))
ion2ec(ions)
# EC_Ca EC_Mg EC_K EC_Na EC_HCO3 EC_Cl EC_SO4 EC_NO3 EC_est TDS_est Factor_TDS
# 1 221.000 164.26000 5.336000 195.96000 259.192000 280.34000 137.06000 23.000 1286.148000 824.9000 0.6413725
# 2 2.210 1.64260 0.053360 1.95960 2.591920 2.80340 1.37060 0.230 12.861480 8.2490 0.6413725
# 3 0.221 0.16426 0.005336 0.19596 0.259192 0.28034 0.13706 0.023 1.286148 0.8249 0.6413725
Date = c(as.Date(rep("2017-01-01", 7)), as.Date(rep("2017-02-01", 7)))
Depth = rep(c(0, 5, 10, 15, 20, 25, 30), 2)
Sal = rep(5, 14)
Temperature = c(30.76, 29.77, 24.28, 21.93, 20.91, 20.43, 20.22,
25.16, 24.77, 22.28, 21.93, 19.41, 18.43, 18.22)
df = data.frame(Date, depth, temperature)
rtr_mixing(df)
# Date Depth Temperature density layer rtr
# 1: 2017-01-01 0 30.76 995.4277 0-5 34.184779
# 2: 2017-01-01 5 29.77 995.7294 5-10 171.443805
# 3: 2017-01-01 10 24.28 997.2425 10-15 63.495407
# 4: 2017-01-01 15 21.93 997.8028 15-20 25.610235
# 5: 2017-01-01 20 20.91 998.0289 20-25 11.633032
# 6: 2017-01-01 25 20.43 998.1315 25-30 5.004173
# 7: 2017-01-01 30 20.22 998.1757 <NA> NA
# 8: 2017-02-01 0 25.16 997.0188 0-5 11.336374
# 9: 2017-02-01 5 24.77 997.1188 5-10 68.441441
# 10: 2017-02-01 10 22.28 997.7229 10-15 9.063321
# 11: 2017-02-01 15 21.93 997.8028 15-20 61.057910
# 12: 2017-02-01 20 19.41 998.3417 20-25 21.700247
# 13: 2017-02-01 25 18.43 998.5332 25-30 4.497137
# 14: 2017-02-01 30 18.22 998.5729 <NA> NA
grp = c(rep("A", 7), rep("B", 7))
Az = c(1000, 900, 864, 820, 200, 10, 5)
dA = c(0, 2.3, 2.5, 4.2, 5.8, 7, 7.5)
wt = c(28, 27, 26.4, 26, 25.4, 24, 23.3, 30, 29, 28.4, 26, 25.4, 24, 23.3)
z = c(0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6)
df = data.frame(grp, z, wt, stringsAsFactors = F)
ssi(df, Az, dA)
# Grp SSI
#1: A 21.62950
#2: B 39.47064
water_density(0:5, method = "tilton")
#[1] 999.8676 999.9265 999.9678 999.9922
#[5] 1000.0000 999.9919
water_density(0:5, method = "gill")
#[1] 999.8701 999.9284 999.9691 999.9928
#[5] 1000.0000 999.9912