-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex2.tex
139 lines (110 loc) · 5.08 KB
/
ex2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
\documentclass[a4paper,10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{uniinput}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{fullpage}
\usepackage{gslist}
\usepackage{gsgraph}
\newcommand{\imp}{\supset}
\newcommand{\I}{\mathcal{I}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\Ib}{\I_{¬ F}}
\newcommand{\It}{\I_{F}}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\Lf}{\L_F}
\newcommand{\Dia}{\Diamond}
\newcommand{\M}{\mathcal{M}}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem*{problem*}{Problem}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\title{NCL exercises 2}
\author{Sebastian Zivota}
\begin{document}
\maketitle
\section*{Exercise 12}
\begin{problem*}
For each of the following formulas:
Find a Kripke model in which the formula is true in some world. Is
there a Kripke model for the formula? If not, why?
(Try to use as few worlds as possible.)
\begin{enumerate}
\item $\Dia p ∧ \Dia \Box p ∧ ¬ \Box p$
\item $p ∧ \Box p ∧ ¬ \Dia p$
\item $(p \imp q) ∧ \Dia (p ∧ ¬q)$
\item $¬ p ∧ \Dia \Dia p ∧ ¬ \Box\Dia p ∧ \Dia\Box ¬p$
\item $\Dia p ∧ (\Box p \imp \Box\Dia p) ∧ \Box (p \imp ¬\Dia p)$
\end{enumerate}
\end{problem*}
\begin{enumerate}
\item $φ \equiv \Dia p ∧ \Dia \Box p ∧ ¬ \Box p$
Let $\M = \vcenter{\begin{graph}(0.5,1)(-0.2,-0.5)
\pos 0=(0,0);1=(1,0).
%\style edgelabel{close}.
\style node{plain};nodelabel{0};edgelabel{W}.
\node 0{$w$};1{$v$}.
\style nodelabel{SE}.
\node 1{$p$}.
\edge 0-0-1.
\end{graph}}$. Then $(\M, w)\models φ$.
Let $\M$ be any Kripke structure and assume $\M \models φ$. Then both $\Dia \Box p$ and $¬ \Box p$ must hold in every node of the $\M$. But if $(\M, w) \models \Dia \Box p$ there is a $w' \in M$ such that $w R w'$ and $(\M, w') \models \Box p$. This contradicts $(\M, w') \models ¬\Box p$.
\item $p ∧ \Box p ∧ ¬ \Dia p$
The structure with a single world in which $p$ holds and no edges satisfies this formula (in its single world and therefore as a whole).
\item $φ \equiv (p \imp q) ∧ \Dia (p ∧ ¬q)$
Let $\M = \vcenter{\begin{graph}(0.5,1)(-0.2,-0.5)
\pos 0=(0,0);1=(1,0).
%\style edgelabel{close}.
\style node{plain};nodelabel{0};edgelabel{W}.
\node 0{$w$};1{$v$}.
\style nodelabel{SE}.
\node 0{$p,q$};1{$p$}.
\edge 0-1.
\end{graph}}$. Then $(\M, w)\models φ$.
$φ$ can be written as $ψ ∧ \Dia ¬ ψ$. Similarly to 1), it is unsatisfiable on the level of structures: On the one hand, $ψ$ must hold in every world, but on the other hand, $¬ψ$ must hold in at least one.
\item $φ \equiv ¬ p ∧ \Dia \Dia p ∧ ¬ \Box\Dia p ∧ \Dia\Box ¬p$
$φ$ is equivalent to $¬p ∧ \Dia \Dia p ∧ \Dia ¬ \Dia p$.
Let $\M = \vcenter{\begin{graph}(0.5,1)(-0.2,-0.5)
\pos 0=(0,0);1=(1,0);2=(2,0).
%\style edgelabel{close}.
\style node{plain};nodelabel{0};edgelabel{W}.
\node 0{$w$};1{$v$}.
\style nodelabel{SE}.
\node 1{$p$}.
\edge 0-0-1.
\end{graph}}$. Then $(\M, w)\models φ$: $\Dia \Dia p$ holds at $w$ because $p$ holds at $v$; $\Dia ¬ \Dia p$ holds at $w$ because $v$ has no successors.
$φ$ cannot have a model because $¬p$ would have to hold in every world and $p$ would have to hold in some worlds.
\item $φ \equiv \Dia p ∧ (\Box p \imp \Box\Dia p) ∧ \Box (p \imp ¬\Dia p)$
Let $\M = \vcenter{\begin{graph}(0.5,1)(-0.2,-0.5)
\pos 0=(0,0);1=(1,0);2=(2,0).
%\style edgelabel{close}.
\style node{plain};nodelabel{0};edgelabel{W}.
\node 0{$w$};1{$v$}.
\style nodelabel{SE}.
\node 1{$p$}.
\edge 0-0-1.
\end{graph}}$. Then $(\M, w)\models φ$: $\Dia p$ is true at $w$ because $p$ is true at $v$; $\Box p \imp \Box\Dia p$ is true because the premise is false; $\Box (p \imp ¬\Dia p)$ is true because the only successor world of $w$ that satisfies $p$ (namely $v$) also satisfies $¬\Dia p$.
$φ$ is unsatisfiable: Assume $\M \models φ$ and $w \in M$. Since $(\M, w) \models \Dia p$, there is a $w' \in M$ such that $w R w'$ and $(\M, w') \models p$. But since $(\M, w) \models \Box (p \imp ¬\Dia p)$, it follows that $(\M, w') \models ¬ Dia p$ and hence $\Dia p$ is not satisfied at every world.
\end{enumerate}
\section*{Exercise 13}
\begin{problem*}
Consider the graph $\F$:
\begin{align*}
\begin{graph}(2,0.5)(0,0)
\pos 0=(0,0);1=(1,0).
%\style edgelabel{close}.
\style node{plain};nodelabel{0}.
\node 0{w};1{u}.
\edge 0-0-1-1-0.
\end{graph}
\end{align*}
Find 3--5 further examples of modal formulas with one schematic variable that are valid in $\F$, above, such that removal of some (which?) accessibilities leads to invalidity.
\end{problem*}
\begin{enumerate}
\item $\Box A \imp \Dia A$ is valid, but becomes invalid if, for instance, both edges originating from $w$ are removed: then $\Box A$ is vacuously true at $w$, but $\Dia A$ is false.
\item Similarly, if $φ$ is any tautology, $\Dia φ$ is valid in $\F$ but becomes invalid if all edges originating from one of the nodes are removed.
\item $\Box A \imp \Box \Box A$ is valid in a frame iff the frame is transitive. Consequently, removing e.g. the loop on $w$ and letting $A \equiv p$, with $p$ true only in $v$, makes this formula false.
\end{enumerate}
\end{document}