forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08_BernTwoGrid.py
114 lines (95 loc) · 3.5 KB
/
08_BernTwoGrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Inferring two binomial proportions via grid aproximation.
"""
from __future__ import division
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
from mpl_toolkits.mplot3d.axes3d import Axes3D
from scipy.stats import beta
from HDI_of_grid import HDI_of_grid
import numpy as np
# Specify the grid on theta1,theta2 parameter space.
n_int = 500 # arbitrary number of intervals for grid on theta.
theta1 = np.linspace(0, 1, n_int)
theta2 = theta1
theta1_grid, theta2_grid = np.meshgrid(theta1, theta2)
# Specify the prior probability _masses_ on the grid.
prior_name = ("Beta","Ripples","Null","Alt")[0] # or define your own.
if prior_name == "Beta":
a1, b1, a2, b2 = 3, 3, 3, 3
prior1 = beta.pdf(theta1_grid, a1, b1)
prior2 = beta.pdf(theta2_grid, a1, b1)
prior = prior1 * prior2
prior = prior / np.sum(prior)
if prior_name == "Ripples":
m1, m2, k = 0, 1, 0.75 * np.pi
prior = np.sin((k*(theta1_grid-m1))**2 + (k*(theta2_grid-m2))**2)**2
prior = prior / np.sum(prior)
if prior_name == "Null":
# 1's at theta1=theta2, 0's everywhere else:
prior = np.eye(len(theta1_grid), len(theta2_grid))
prior = prior / np.sum(prior)
if prior_name == "Alt":
# # Uniform:
prior = np.ones((len(theta1_grid), len(theta2_grid)))
prior = prior / np.sum(prior)
# Specify likelihood
z1, N1, z2, N2 = 5, 7, 2, 7 # data are specified here
likelihood = theta1_grid**z1 * (1-theta1_grid)**(N1-z1) * theta2_grid**z2 * (1-theta2_grid)**(N2-z2)
# Compute posterior from point-by-point multiplication and normalizing:
p_data = np.sum(prior * likelihood)
posterior = (prior * likelihood) / p_data
# Specify the probability mass for the HDI region
credib = .95
thin = 4
color = 'skyblue'
fig = plt.figure(figsize=(12,12))
# prior
ax = fig.add_subplot(3, 2, 1, projection='3d')
ax.plot_surface(theta1_grid[::thin,::thin], theta2_grid[::thin,::thin], prior[::thin,::thin], color=color)
ax.set_xlabel(r'$\theta1$')
ax.set_ylabel(r'$\theta1$')
ax.set_zlabel(r'$p(t1,t2)$')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.subplot(3, 2, 2)
plt.contour(theta1_grid, theta2_grid, prior, colors=color)
plt.xlabel(r'$\theta1$')
plt.ylabel(r'$\theta1$')
# likelihood
ax = fig.add_subplot(3, 2, 3, projection='3d')
ax.plot_surface(theta1_grid[::thin,::thin], theta2_grid[::thin,::thin], likelihood[::thin,::thin], color=color)
ax.set_xlabel(r'$\theta1$')
ax.set_ylabel(r'$\theta1$')
ax.set_zlabel(r'$p(D|t1,t2)$')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.subplot(3, 2, 4)
plt.contour(theta1_grid, theta2_grid, likelihood, colors=color)
plt.xlabel(r'$\theta1$')
plt.ylabel(r'$\theta1$')
plt.plot(0, label='z1,N1,z2,N2=%s,%s,%s,%s' % (z1, N1, z2, N2), alpha=0)
plt.legend(loc='upper left')
# posterior
ax = fig.add_subplot(3, 2, 5, projection='3d')
ax.plot_surface(theta1_grid[::thin,::thin], theta2_grid[::thin,::thin],posterior[::thin,::thin], color=color)
ax.set_xlabel(r'$\theta1$')
ax.set_ylabel(r'$\theta1$')
ax.set_zlabel(r'$p(t1,t2|D)$')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.subplot(3, 2, 6)
plt.contour(theta1_grid, theta2_grid, posterior, colors=color)
plt.xlabel(r'$\theta1$')
plt.ylabel(r'$\theta1$')
plt.plot(0, label='p(D) = %.3e' % p_data, alpha=0)
plt.legend(loc='upper left')
# Mark the highest posterior density region
HDI_height = HDI_of_grid(posterior)['height']
plt.contour(theta1_grid, theta2_grid, posterior, levels=[HDI_height], colors='k')
plt.tight_layout()
plt.savefig('BernTwoGrid_%s.png' % prior_name)
plt.show()