diff --git a/just_agents/llm_session.py b/just_agents/llm_session.py index 0745a48..6b205fd 100644 --- a/just_agents/llm_session.py +++ b/just_agents/llm_session.py @@ -1,6 +1,7 @@ from pathlib import Path -from litellm import ModelResponse, completion, Message +from litellm.utils import ChatCompletionMessageToolCall, Function +from litellm import ModelResponse, completion, acompletion, Message from typing import Any, Dict, List, Optional, Callable import litellm import json @@ -9,9 +10,101 @@ from just_agents.llm_options import LLAMA3 from just_agents.memory import Memory +from starlette.responses import ContentStream +import time OnCompletion = Callable[[ModelResponse], None] +class FunctionParser: + id:str = "" + name:str = "" + arguments:str = "" + + def __init__(self, id:str): + self.id = id + + def parsed(self, name:str, arguments:str): + if name: + self.name += name + if arguments: + self.arguments += arguments + if len(self.name) > 0 and len(self.arguments) > 0 and self.arguments.endswith("}"): + return True + return False + + +def get_chunk(i:int, delta:str, options: Dict): + chunk = { + "id": i, + "object": "chat.completion.chunk", + "created": time.time(), + "model": options["model"], + "choices": [{"delta": {"content": delta}}], + } + return json.dumps(chunk) + + +def process_function(parser:FunctionParser, available_tools: Dict[str, Callable]): + function_args = json.loads(parser.arguments) + function_to_call = available_tools[parser.name] + try: + function_response = function_to_call(**function_args) + except Exception as e: + function_response = str(e) + message = Message(role="tool", content=function_response, name=parser.name, + tool_call_id=parser.id) # TODO need to track arguemnts , arguments=function_args + return message + + +def get_tool_call_message(parsers:list[FunctionParser]) -> Message: + tool_calls = [] + for parser in parsers: + tool_calls.append({"type":"function", + "id":parser.id, "function":{"name":parser.name, "arguments":parser.arguments}}) + return Message(role="assistant", content=None, tool_calls=tool_calls) + + +async def _resp_async_generator(memory: Memory, options: Dict, available_tools: Dict[str, Callable]): + response: ModelResponse = completion(messages=memory.messages, stream=True, **options) + parser:FunctionParser = None + function_response = None + tool_calls_message = None + tool_messages:list[Message] = [] + parsers:list[FunctionParser] = [] + deltas:list[str] = [] + for i, part in enumerate(response): + delta: str = part["choices"][0]["delta"].get("content") # type: ignore + if delta: + deltas.append(delta) + yield f"data: {get_chunk(i, delta, options)}\n\n" + + tool_calls = part["choices"][0]["delta"].get("tool_calls") + if tool_calls and (available_tools is not None): + if not parser: + parser = FunctionParser(id = tool_calls[0].id) + if parser.parsed(tool_calls[0].function.name, tool_calls[0].function.arguments): + tool_messages.append(process_function(parser, available_tools)) + parsers.append(parser) + parser = None + + if len(tool_messages) > 0: + memory.add_message(get_tool_call_message(parsers)) + for message in tool_messages: + memory.add_message(message) + response = completion(messages=memory.messages, stream=True, **options) + deltas = [] + for i, part in enumerate(response): + delta: str = part["choices"][0]["delta"].get("content") # type: ignore + if delta: + deltas.append(delta) + yield f"data: {get_chunk(i, delta, options)}\n\n" + memory.add_message(Message(role="assistant", content="".join(deltas))) + elif len(deltas) > 0: + memory.add_message(Message(role="assistant", content="".join(deltas))) + + yield "data: [DONE]\n\n" + + @dataclass(kw_only=True) class LLMSession: llm_options: Dict[str, Any] = field(default_factory=lambda: LLAMA3) @@ -51,28 +144,43 @@ def instruct(self, prompt: str): self.memory.add_message(system_instruction, True) return system_instruction - def query(self, prompt: str, stream: bool = False, run_callbacks: bool = True, output: Optional[Path] = None) -> str: + def query(self, prompt: str, run_callbacks: bool = True, output: Optional[Path] = None) -> str: """ Query large language model :param prompt: - :param stream: :param run_callbacks: + :param output: :return: """ question = Message(role="user", content=prompt) self.memory.add_message(question, run_callbacks) - return self._query(stream, run_callbacks, output) + return self._query(run_callbacks, output) + + + def query_all(self, messages: list, run_callbacks: bool = True, output: Optional[Path] = None) -> str: + self.memory.add_messages(messages, run_callbacks) + return self._query(run_callbacks, output) - def query_all(self, messages: list, stream: bool = False, run_callbacks: bool = True, output: Optional[Path] = None) -> str: + def stream_all(self, messages: list, run_callbacks: bool = True) -> ContentStream: self.memory.add_messages(messages, run_callbacks) - return self._query(stream, run_callbacks, output) + return self._stream() + + + def stream(self, prompt: str, run_callbacks: bool = True, output: Optional[Path] = None) -> ContentStream: + question = Message(role="user", content=prompt) + self.memory.add_message(question, run_callbacks) + return self._stream() - def _query(self, stream: bool = False, run_callbacks: bool = True, output: Optional[Path] = None) -> str: + def _stream(self) -> ContentStream: + return _resp_async_generator(self.memory, self.llm_options, self.available_tools) + + + def _query(self, run_callbacks: bool = True, output: Optional[Path] = None) -> str: options: Dict = self.llm_options - response: ModelResponse = completion(messages=self.memory.messages, stream=stream, **options) + response: ModelResponse = completion(messages=self.memory.messages, stream=False, **options) self._process_response(response) executed_response = self._process_function_calls(response) if executed_response is not None: @@ -90,7 +198,7 @@ def _query(self, stream: bool = False, run_callbacks: bool = True, output: Optio def _process_function_calls(self, response: ModelResponse) -> Optional[ModelResponse]: """ processes function calls in the response - :param response: + :param response_message: :return: """ response_message = response.choices[0].message @@ -100,6 +208,7 @@ def _process_function_calls(self, response: ModelResponse) -> Optional[ModelResp message = self.message_from_response(response) self.memory.add_message(message) for tool_call in tool_calls: + print(f"Calling function {function_name}({function_args})") function_name = tool_call.function.name function_to_call = self.available_tools[function_name] function_args = json.loads(tool_call.function.arguments)