-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkriging.py
222 lines (164 loc) · 7.45 KB
/
kriging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
import pickle
import xarray as xr
import geopandas as gpd
from model.gp import gp_create, gp_predict
from model.nn import nn_create, nn_predict
from utils.netcdf import load_copernicus_ammonia
from utils.plot import plot_grid
kriging_months = ['January', 'April', 'July', 'October']
# features
classes = ['Class_Agg_Urbano', 'Class_Rurale', 'Class_Urbano', 'Class_Montagna']
seasons = ['Spring', 'Summer', 'Fall', 'Winter']
other_categoricals = ['Binary TP', 'Weekend']
to_be_scaled = ['NH3', 'Altitude', 'Temperature', 'Dewpoint', 'BLH', 'Wind_u', 'Wind_v', 'Wind Speed']
nn_features = to_be_scaled + classes + seasons + other_categoricals
gp_features = ['Longitude', 'Latitude', 'Time']
target = ['NO2']
scaler = pickle.load(open('output/scaler/scaler.save', 'rb'))
# nn model
nn_model = nn_create(NUM_FEATURES=len(nn_features), NUM_LAYERS=2, NUM_NEURONS=64)
nn_model.load_state_dict(torch.load('output/models_state_dict/nn_model.pth'))
def df_to_tensor(df, features):
return torch.from_numpy(np.array(df[features].to_numpy())).float()
kriging_images = []
kriging_variances = []
for kmonth in kriging_months:
# NO2 value placeholder
kriging_date = f'15 {kmonth} 2020'
# full_df = pd.read_csv(f'data/kriging_dataset_{kriging_date.replace(" ", "_")}_250x250_interpolated.csv',
# index_col=0)
full_df = pd.read_csv(f'data/kriging_dataset_{kriging_date.replace(" ", "_")}_250x250.csv',
index_col=0)
full_df['NO2'] = -1
df = full_df.reset_index().copy().dropna()
# scale dataset
df[to_be_scaled + target] = scaler.transform(df[to_be_scaled + target])
# create dataset
x_nn_t = df_to_tensor(df, nn_features)
y_nn_t = df_to_tensor(df, target)
x_gp_t = df_to_tensor(df, gp_features)
nn_preds = nn_predict(x_nn_t, y_nn_t, nn_model, 'cuda:0', BATCH_SIZE=1024)
nn_preds = np.array(nn_preds)
y_nn = y_nn_t.numpy().reshape(-1)
nn_errors = y_nn - nn_preds
nn_errors_t = torch.from_numpy(nn_errors)
gp_model, likelihood = gp_create(x_gp_t, torch.from_numpy(nn_preds), None, NU=1 / 2, INDUCING_POINTS=500)
gp_model.load_state_dict(torch.load('output/models_state_dict/gp_model.pth'))
gp_preds, gp_vars = gp_predict(x_gp_t, nn_errors_t, gp_model, 'cuda:0', BATCH_SIZE=512)
gp_preds = np.array(gp_preds)
gp_vars = np.array(gp_vars)
df['NN'] = list(nn_preds)
df['GP'] = list(gp_preds)
df['NN+GP'] = list(nn_preds + gp_preds)
df['NO2'] = list(nn_preds + gp_preds)
df['Variance'] = list(gp_vars)
df[to_be_scaled + target] = scaler.inverse_transform(df[to_be_scaled + target])
j_df = pd.merge(full_df.reset_index(), df, on='index', how='outer')
data = np.array(j_df['NO2_y'].values).reshape(250, -1)
var = np.array(j_df['Variance'].values).reshape(250, -1)
kriging_images.append(data)
kriging_variances.append(var)
# clipping data
min_val = -10
max_val = 120
kriging_images = [np.clip(data, min_val, max_val) for data in kriging_images]
# plot distributions
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
for i, ax in enumerate(axs.flatten()):
ax.set_title(kriging_months[i])
sns.histplot(kriging_images[i].reshape(-1), ax=ax)
plt.show()
# set ticks and labels
lats = sorted(list(set(df['Latitude'].values)))
lons = sorted(list(set(df['Longitude'].values)))
min_lat, max_lat = round(np.min(lats), 2), round(np.max(lats), 2)
min_lon, max_lon = round(np.min(lons), 2), round(np.max(lons), 2)
num_ticks = 6
lat_ticks = [round(lat, 2) for lat in np.linspace(min_lat, max_lat, num_ticks)]
lon_ticks = [round(lon, 2) for lon in np.linspace(min_lon, max_lon, num_ticks)]
# plot seasons kriging
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
fig.subplots_adjust(wspace=0.1, hspace=0.2)
for i, ax in enumerate(axs.flatten()):
ds = xr.DataArray(data=np.rot90(np.fliplr(kriging_images[i]), 1),
dims=["lat", "lon"],
coords=dict(lon=lons, lat=lats))
img = ds.plot.pcolormesh(vmin=min_val, vmax=max_val, ax=ax, add_colorbar=False)
ax.set_title(f'15 {kriging_months[i]} 2020')
ax.set_ylabel('Latitude')
ax.set_xlabel('Longitude')
fig.colorbar(img, ax=axs, location='bottom', shrink=0.9, pad=0.05, label='NO₂ (µg/m³)')
plt.show()
# plt.savefig('output/kriging/seasons.png', bbox_inches='tight', pad_inches=0)
# plot seasons kriging variances
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
fig.subplots_adjust(wspace=0.1, hspace=0.2)
for i, ax in enumerate(axs.flatten()):
ds = xr.DataArray(data=np.rot90(np.fliplr(kriging_variances[i]), 1),
dims=["lat", "lon"],
coords=dict(lon=lons, lat=lats))
img = ds.plot.pcolormesh(ax=ax, add_colorbar=False)
ax.set_title(f'15 {kriging_months[i]} 2020')
ax.set_ylabel('Latitude')
ax.set_xlabel('Longitude')
fig.colorbar(img, ax=axs, location='bottom', shrink=0.9, pad=0.05, label='NO₂ (µg/m³)')
plt.show()
# January kriging analysis
ds = xr.DataArray(data=np.rot90(np.fliplr(kriging_images[0]), 1),
dims=["lat", "lon"],
coords=dict(lon=lons, lat=lats))
# load temp and blh datasets
temp = xr.load_dataset('data/copernicus/temperature_2m/ERA5-LAND_0.1x0.1_temperature_daily.nc').t2m
nh3 = load_copernicus_ammonia(['agl', 'ags'], time_slice=slice('2016-01-01', '2020-12-31'),
lat_slice=slice(44.75, 46.65), lon_slice=slice(8.5, 11.25))
blh = xr.load_dataset('data/copernicus/boundary_layer_height/ERA5-0.25x0.25_boundary_layer_heigth_daily.nc').blh
# plot grids over the kriging image
fig, ax = plt.subplots(ncols=1, figsize=(8, 8))
img = ds.plot.pcolormesh(vmin=min_val, vmax=max_val, ax=ax, add_colorbar=False)
plot_grid(nh3, ax, color='C0', label='NH₃ grid')
plot_grid(temp, ax, color='white', label='Other features grid')
plot_grid(blh, ax, color='red', label='BLH grid')
ax.legend(facecolor='lightgrey')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
# plt.savefig(f'output/images/kriging/kriging_over_features_resolution.png', bbox_inches='tight', pad_inches=0)
plt.show()
# plot surface classification over kriging image
rename_dict = {
'Agg_BG': 'Agg_Urbano',
'Agg_BS': 'Agg_Urbano',
'Agg_MI': 'Agg_Urbano',
'A': 'Urbano',
'B': 'Rurale',
'C': 'Montagna',
'D': 'Montagna'
}
zoning_shp = gpd.read_file('./shp/zoning/zone.shp').to_crs(epsg=4326)
zoning_shp.rename(columns={'COD_ZONA': 'Class'}, inplace=True)
zoning_shp.drop(['COD_ZONA2C'], axis=1, inplace=True)
zoning_shp = zoning_shp[~zoning_shp['Class'].isin(['D'])]
# plot
fig, ax = plt.subplots(ncols=1, figsize=(8, 8))
img = ds.plot.pcolormesh(vmin=min_val, vmax=max_val, ax=ax, add_colorbar=False)
zoning_shp.boundary.plot(ax=ax, color='white')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
# plt.savefig(f'output/kriging/kriging_over_surface_classification.png', bbox_inches='tight', pad_inches=0)
plt.show()
# plot bad predictions
corrected_image = kriging_images[0]
corrected_image[corrected_image < 0] = np.nan
ds = xr.DataArray(data=np.rot90(np.fliplr(corrected_image), 1),
dims=["lat", "lon"],
coords=dict(lon=lons, lat=lats))
fig, ax = plt.subplots(ncols=1, figsize=(8, 8))
img = ds.plot.pcolormesh(vmin=0, vmax=max_val, ax=ax, add_colorbar=False)
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
# plt.savefig(f'output/kriging/bad_predictions.png', bbox_inches='tight', pad_inches=0)
plt.show()