-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch3-distortion.nb
1224 lines (1204 loc) · 58.9 KB
/
ch3-distortion.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 60194, 1216]
NotebookOptionsPosition[ 58906, 1187]
NotebookOutlinePosition[ 59265, 1203]
CellTagsIndexPosition[ 59222, 1200]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{"x", "*",
RowBox[{"\[Pi]", "/", "2"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<in/V\>\"", ",", "\"\<out/V\>\""}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", " ", "\[Pi]", " ", "t"}], "]"}], " ", ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<t/s\>\"", ",", "\"\<in/V\>\""}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", " ", "\[Pi]", " ", "t"}], "]"}], " ",
RowBox[{"\[Pi]", "/", "2"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",", "1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<t/s\>\"", ",", "\"\<out/V\>\""}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sig", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", " ", "\[Pi]", " ", "t"}], "]"}], " ",
RowBox[{"\[Pi]", "/", "2"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "9.99", ",", "0.01"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pwr", "=",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Fourier", "[", "sig", "]"}], "/",
SqrtBox["250"]}], "]"}], "/",
SqrtBox["2"]}], ")"}], "2"]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pwrdb", "=",
RowBox[{"10", "*",
RowBox[{"Log10", "[", "pwr", "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"freq", "=",
RowBox[{"Table", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"f", ",", "0", ",", "99.9", ",", "0.1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ps", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"freq", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"pwrdb", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "200"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{"ps", ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "130"}], ",", "0"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "130"}]}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"PlotMarkers", "\[Rule]", "None"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ptotal", "=",
RowBox[{"Total", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"pwr", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "11", ",",
RowBox[{
RowBox[{"Length", "[", "pwr", "]"}], "/", "2"}], ",", "10"}], "}"}]}],
"]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<THD = \>\"", ",",
SqrtBox[
FractionBox[
RowBox[{"ptotal", "-",
RowBox[{"pwr", "[",
RowBox[{"[", "11", "]"}], "]"}]}],
RowBox[{"pwr", "[",
RowBox[{"[", "11", "]"}], "]"}]]]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<\!\(\*SubscriptBox[\(THD\), \(R\)]\) = \>\"", ",",
SqrtBox[
FractionBox[
RowBox[{"ptotal", "-",
RowBox[{"pwr", "[",
RowBox[{"[", "11", "]"}], "]"}]}], "ptotal"]]}], "]"}]}], "Input",
CellChangeTimes->{{3.7513511695740337`*^9, 3.751351196104608*^9}, {
3.751351242380321*^9, 3.751351295423147*^9}, {3.751351378555481*^9,
3.751351430143239*^9}, {3.751353093838276*^9, 3.75135312733718*^9}, {
3.751353169485997*^9, 3.7513532096730556`*^9}, {3.7513532570346622`*^9,
3.751353306971263*^9}, {3.7513539061736183`*^9, 3.751353914995866*^9}, {
3.751354527131076*^9, 3.751354527227236*^9}, 3.751355814136447*^9, {
3.7513561308121758`*^9, 3.751356194994453*^9}, {3.75135624291253*^9,
3.751356255744548*^9}, {3.7513563142012577`*^9, 3.751356317329945*^9},
3.751356461748867*^9, {3.7513607686704473`*^9, 3.7513608279972982`*^9}, {
3.7534345711402884`*^9, 3.7534346118410473`*^9}, 3.753434665189871*^9,
3.7534347278032503`*^9, 3.753434782839962*^9, {3.753434816172113*^9,
3.7534348556740913`*^9}, {3.7534349097903643`*^9, 3.753434962519518*^9}, {
3.753435012926738*^9, 3.753435039393853*^9}, {3.7534350812441072`*^9,
3.753435120659895*^9}},ExpressionUUID->"afeb1a01-fd8b-41bf-a503-\
7c6fd1d6762c"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}],
CapForm["Butt"], LineBox[CompressedData["
1:eJwBEQLu/SFib1JlAgAAACAAAAACAAAALj8W6v//77/iWfaC6Q/wv2/5I4j5
+u+/oZjBAcYO8L+wszEm8/Xvv121Wz+iDfC/MihNYubr77/M2rD2WQvwvzcR
hNrM1++/ps3LU8YG8L9A4/HKma/vv7rjMW4l+++/UofNqzNf77+B+wI389Xv
v3fPhG1nvu6/qulYJ/eJ77/U1AvqwWHtv+TZKYyW3e6/HcBvFDcc7L99a0ji
mDLuv7VrxAUP3eq/AXjfKNKA7b9gjDHw2YLpvwY3iy/As+y/+JJ7iL8/6L/q
qD79A+jrv6MO3hmY4ea/7Ezgq7j86r+cSjFy04nlvw6883DxBeq/gmxheClJ
5L/uaqQipRDpv3sDqndy7eK/rvi10Qz1579hgM8k1qjhvzyDVLS72ua/lb3l
mJxq4L8VlRHfkbTlv7rfKAysIt6/mxhzgvJg5L8jEEBCVJ7bvy1LmFIREOO/
siqIauLj2L/EleQpcIzhv9/FsSA2Nta/HyYPeo/x37/lLJUyv7bTvyLjxwte
19y/EX6pNi4B0b+ZpM7H4E3Zvyw27yyl88y/ZRW5Ii/Z1b+DRO3QuXjHv5/k
Qyjd8tG/FVSukFkXwr/7dy7vy/bLv7L2xQ/IJLq/hA2o1xdcxL+l2+WN6YSu
v+t16aVo5re/XVEctNtjlL9kUWW3VAKgvzsFL6fg5US/A0RNWMhpUL/aGzDS
"]], LineBox[CompressedData["
1:eJwVyH0s1HEAx/HrJLo6qcWmOjpFcaGZnqg+ysPIQ+6kOyOi0gMRq1CKjJbS
Usk8TNQp6eFEK9GdnhTmaUSIKeehc7rf95fHu9JUf7z32t7c0CjBISaDwbD+
1383adsUfxtyBsPZS1R31Acb5HOML4hK8eLWI+aKKy+xin6lsX9XiZtJ2dO5
+jVwF3c3eYvewYw5kq0RNsLFa4nW5PNahMRsCdhq0oZrwZ1J6ysawefkiGYk
Haj15rB9lrTiD78sv+5gN1Rcg/NtuZ9wMfFASv2zXpw6yQu5ZvgZF3cL7W0a
vqKzV18QVtcF3r7Da54l9GN//NbvOp49eCwT2N0ekOM9b9Pl99p9YC1OTXIU
DMJ8vlRR5PYNUYMWhsaZQ+BIw120L/VjZbtR6wbZMBi/mCUxcjnqbWdO1ox+
xzRfFvTBbBDdd0ypuxMK9NgFLzdLGcLsY+u1VXOUOCHUX2zaO4zZpBtclVoJ
o8xB0VyOAn42bN+g1lFIAgqLx+NGMO6bV/b0yQ8ItyW61cmUGPsa1tEeqUJZ
0HFT+5lRVJ0VJ2znUlCznLQq/VTwkOU8ie6kIGh12MjJpjCQ6cC/GkvAcljw
VppPoSVsdZbTGYK3RV88AsUUFkYHW2oSCNbHxYfkSSgwdcp3hCYT6JlUpBt9
oNA2ybZdd5WgPsJ2wGCMQprVJY+CuwSOuhYZep4EhaE9P7SaCNTR6mUSPsFk
ljqtqIWgtKf2npeQoOBGzDnnNgLj0rBX6aEEgU7+R5I7CWb8ioZZ8QQRVhO+
U/0EFWKTbTr3CRrWbC6vniKIZJPa+48IxhTNzXs0BOax1QLXMgLT6zwX5W+C
zF37jqRK/32eTmEag0bMz9ybWp8I9k5aVUm0aVgGHDMWdxEs9U62nZ5Ho79m
S8nOPgLVsQwRdGn4ZHdVXxghUDx0ljSzaOgyH7hzCYHF0pV9BgtpvA6PbX8z
QfCxyUQayKZxusM1eP8vAs2BIDexHg1rGCpnZwnk/lPJI4to/AV32XVl
"]]},
Annotation[#,
"Charting`Private`Tag$18191#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox["\"in/V\"", TraditionalForm],
FormBox["\"out/V\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->{240.8046875, Automatic},
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 1}, {-1.0038848033633418`, 1.0038848033633418`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{{{-1,
FormBox[
RowBox[{"-", "1"}], TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}}, {{-1,
FormBox[
RowBox[{"-", "1"}], TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}}},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.7513511874867783`*^9, 3.751351196468894*^9}, {
3.75135129210126*^9, 3.751351295783876*^9}, {3.75135140390935*^9,
3.75135143054405*^9}, {3.751353108616273*^9, 3.751353148209621*^9},
3.751353210111536*^9, {3.751353271164962*^9, 3.751353292465996*^9},
3.7513539279780407`*^9, 3.7513545277467737`*^9, 3.75135581575909*^9, {
3.751356187375073*^9, 3.751356196344239*^9}, 3.7513562561626043`*^9,
3.751356344702463*^9, 3.751356424381041*^9, 3.751356463159862*^9,
3.751358974139076*^9, {3.75136078527812*^9, 3.751360828400824*^9},
3.753434380105475*^9, {3.753434585996805*^9, 3.753434635018491*^9},
3.753434665820651*^9, 3.7534347283856287`*^9, {3.7534347756034403`*^9,
3.7534347833573236`*^9}, {3.753434816931365*^9, 3.753434861401379*^9}, {
3.753434938374501*^9, 3.753434962903234*^9}, {3.75343509267546*^9,
3.753435122286776*^9}},ExpressionUUID->"5a7ecd49-9715-49f7-b81e-\
8fba9066b253"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwtmnlczN/3xwsfVNasES3aJFlDyEkbIpI2kYgQKktCVBTJVqmkhTZlqbRZ
UqrTXlpn2jet0+wzN1q1/t7fx+P3z8zjOXPu+33O65x73/e8H1fO1snEbpqI
iEg29fG/b3VYyp2aInguxKCqR+PlHqd/a3z+jRLsOCgvLRXoBClfNin1DxKc
qW/ALAzwgM0qRrZMHkH6/klRuwA/2L7wYUtFI8HXcv0C65eRoN3zpyw0maB1
zgkx9xfJYPK4MmGLDcGnCdsuyLgj3Kp+6HAhR4jprifzOrWroa5Ogpt3RoC6
zV9TL9/ugAfnvuUknBRggO837xkpHaA+cCrwlYUAXQ360Y3VAT6L0nbbGwlQ
uH1Ye/a6TtAysfRboClAE4UNkU0hnfC+OnarzQIBWq6U4Ftc64LbZVoe4zl8
9HB5sGfJkh5QtGIdY2bwccFx9aAv6j1Qw/FXoX3lIym+VLJnfw+oiTHo7+L5
mD2ccXrl3R7o2vdU4WAwH0cfT4VyO3rAsKjhV6gDHwW3eveWxzFgVa7T4u3S
fOT3XTvDlWNChaSG885lfDT5KrbgwQ4muNqN1mpJUvebUXB12hEmNIg/CtSb
zcefjTZ/C+8ywd8sTNJkgIfSi1QjDeqYMJ1XuMChgoduf6JVVR+wgLNkxdx3
93i4bm1uUfcvNoRc7Ljy/hYPwy8ken74zQaDn7EVn67zsGr0wUXTP2yIOb3h
ecpFHk5zf3b2/HIOnEzQk8gx5eHxy/5z7O04UK3tJNasxsPMZebyzaMc+Ha5
8L/5v7no53V3kC3Jgx2yjpveN3Kx8VGx6ogCDzLrlllr1XBRqsIjl72NB7la
l79eLuHibYnLWQ5WPCibL3m2NJWLBfsnS2ZE8aDzi03uA28ubv2Yv8FckQ+2
F8X4yx9wcZr1h13XNfjQK/1lWcpdLsLZIGdHfT5wH810ar/KxeehPoqz7Pgw
aPF51a4TXJx6WhSYHsMH8fFR14ENXDw4Khny33IBvEiJff9MlYuRlxKPSCsJ
YIHd4Rp5RS66j5QrSG4VwJKq6LVHV3BRRb6AHXZEALJR+5s+z+DiTk6Osswj
AWjoBWtcaOagaYCmey9HAD9G4MxkLQd1G+dOMgcFsPMz5/mrKg5KDY2lFIsK
QXupFqOggIPGTd9dZaWEYMjuCZBN4qCweHzDbgMhnH6+qa/Zk4N7cvw2i4UJ
wfVrgHelGwe/fHx6TvudEF619Uvn3eagDfPD3eOJQihT+37goyMH+97EamzK
EcKWyp3vXKw4mCwT03uzUwiHB8M1L5lx0Km/9dBPthAurpqotjbm4Fu3v6bd
fUJ444DjegYcZEWUKteLEJg5T8980WYOqq5SmTokQ0B2Wxx/5noOzh5+FBih
RGDXqZleo8ocHMG+Z/T1BK4mlSZ3reKgiw8+b91FoPmwkViKGAfpCmHzPcwJ
DLgkRb6bwUE9w94ZrScJzIucv+31FBu7Tv5VWX6WgA6h27oPstF3NY+h4UQg
0c8861AXG111lH0mHxEoTk830W5jI1PN/fDZZwS6OpZztjSyUbXj95JP/gSW
bmxdsrKSjUdapAMbwwh40GycOD/YuDJRLAc/Ewgbyf3v9xc2qujoTFNLI/BV
Vv4NLYmNjwIuyN35ToB9lVGaHsvGWSuTO77lEDBZaC/v7c9G74vnBD8qCVzR
LPtx5xkbXxjZhK6jE3h8Zt0RB282Pj1GF/WoI5CVKrhreo+NwYuVx0paCDQ0
H5bcf4uNBbTfj7J/E+gTTfm46zobN31PzQ3sJKBocr1e/iIbN5z8tKu7l4C2
a+3lpWfZKL832MWKTcAqZus08VNs1H672eILl4Bz2auQCUvqetM2tvL5BHz/
Dqn/OcZGXt0pkVmEwMcVlkWMw2xcbZhUKPqHQIFOxommA2wccFBT+v2XwEjA
XR8ENm5XfJyhMUSAJZ3HNdjJxqlXa+zow5S/72caVW1l49m/p9T2/yNQuPFQ
stkGNgp++MwNGyXwJfPlwt9rqfETK2aVjBGI0Wu8cU6BjR/tM5dVjxPwr5Ju
4K1mo8TebXvSJij9LW133JBiI9fG587VSQKO3R/CRhexMU+rvlRsisDJK4Lx
B/Mo/wSX17lTfHBos42YGBtjZYujKineef92nv90Nuqt8VEZoVhFPGfN8kkW
zui6nz9B8bKg6d6RIyyU6Pnk2E7xzNUH2Er9LPQwVl4fRvHAB1/DJAELLYT7
JjdS3LOpLlGDzcKZMo+6Yyh/an5Kzc/uZiGvy7OFUP7m6ttc0/vNwsCa+axl
FCdXx9aWN7KwWllRbCUVX8RxrsaxGhb6pzH3Us8xeN6zIaSlgoWhbTEBaZRe
dx1ujp4pYeHY+5pxgxECl4YzT3LyWHjuo5Tnd0pvywcieDWLhTskDBREBwns
kzCQG/nOwvvPjHuV+glse/XMyyOVhZHOJ0uUqfwpyNB7ZyaysDUivWI6ld9F
n5bu933PwswrLcOZVP6nbTkZvySahXKlFw4aUfXRlxU95204Cw/IrC/LZBGo
oqnRE/xZSMbszZS7qfq0ur5lyzMWPqo3vqjUQSCBkf4q8xEL3x88/EWkjYDP
iI7VL1cW9mfsEdlXT+CWp0+W8U0Wrng9IPaFqvfzc6pWNzlRetANToxS80FX
9ngP8xwLLR2XM1cUE9gcH6HvaMPCrO+fVQbyqPViK+PD4HEWGslIFH3MJjC5
z+nKjCMsNHywUib2K4EfTo8G5TSpfJRkCXqiCHz4V2bxaQsLg+a/CggJJxDs
tSBzozoLXwfeyVYJJnDjdbg7rGHhkFZ8TutTAuqYOst6LqVnXorKi+sEpA8M
2zNmsbAlruz76isEJGp3V1yexsK8L5miz+2o+c0s8XcdZuK11Aj+PwsC7+a1
S4V0MXHi1ZrBNdR6FXACZmm2MXEBbQMrfQsBz49RA80NTPQPOKqwVo2Arc7Z
6pUVTOx5+Sb6nTQBeRf2w8jvTByyVn/7b0wIMdQke/+MicPfNbI3fRVCgKrp
733eTNSKuRsXES8Ez1vfytj3mej01PwaJ0oItgtvx6m6MNEgTL5j+QshyOlP
WCWdZmLOuhzDzrNCiEqcVfxNg4lK+6aFr5QQgv+/i1/MNzKxpFiw+sqUAO4b
lEUNqzJR1bVVL7xfAKc7n9/VlGXi4THnhFetApBZLLkpW5yJ9e1ZJ8c/CSDi
rvSbwo5efLvq0Mu32gJ4Y7jpeu2TXtSr7ywJMeODgoRhGe1hLw61i6ZwDPiQ
UG4rX+XRizM2Ldsps4MPmYeCakpv9uLTn3cddqzgU+v78OacM734buAeW+E3
D5Yey+7/qNmLknFt0G/NA78TB266cxiYgVl6tQe5sFTatvIug4HsoiaZBk0u
RLS5Kt7pYCA8Xh6KylxIsk6sv1HPwDYR+USD6VyosJm/zT6PgetuPNdTzuDA
7HP1Q8dCGfgzIG2+jiwHPK+cub32AAM9j3y6daaNBe2+p95k6jJQYkStNKiI
BTtTT+Qe3EPZO+yR+JzEgr+DZrMdtzDQ6pQD/fl9FpzxMAxJW8XAsncnYc4a
FmgHbPmx628PFjr7zZc/y4TJ9P9GjMJ7UGNj7uglGgPuTo+/dV3QjTyuULPZ
rgvO3K9WaPjYhawny82S7tXBq+zekDeXOlHT7pQ+j/0VMjtU5iTKt2M59+zB
hkMluGaBto5pRCtu9lHSP5bSgr4bu1wvBbYiyd8QGixswRFjzy/3fVrR2aVv
2k+1Vqx4Wajw+XorqihfGI37SP2+6MCsmfta8XXrj6/jEW1YvNSkIp204L7b
Bp+dHrXjpVXnzFfubcEzEu6bC1Z2YZ3Wf36btrWg6u8bvmk7unDPqfcl+9a1
YF3sZ0Vfsy5cFMne4bykBd1kvR6I+XVhlqzDykpOM1671mg6V7Qb5ym4dLoH
NOOYhxpbrasb01R9LnX3NGHa2fspfH8GytBPZ6xrbsKyMBHf+HgGPr+lOftm
VRM+GXf0PVrIQLtCbtysjCassEjwthpm4PJTRl1qvk24W+uQttnJXnR7KWl5
a0cTOiz1e1ovx8T9I2/057xoRI3Olkd6YSz8FnEzyMyzEQ/kHcr/k8JCef3D
PRG3GlFdetmvh/9bZ19O3d9k24i+o3z6iQEWJq2zzTLf3oie+o+lyw+xcbGN
8pborga0yvtpFjrCxo6iVNlt2xrQPev0M+NdXLx37J/eDrUGtJ16obfHiIvL
u7Ttd8o34PRCZpKkDReNx6tT98xrQF+nQBMnTy7mbhbq7GPWo637/bFBap8a
FalqZxlcj1OinUdVD/Nw9/rrT6ye1+Oce6z9d0/xsCkz4/NJz3pccWMjN9WR
hwsa9g+ddqzHZRKagmpfHj6Yc+GxvUE9Oja9Mqis5KHtnXefXIfqcN4CZaVc
Az5OzuRV3uPXYahQ8dM5Mz6GBW3+695dh+176WzBWT7WJOft9KqqQ78J0/NJ
9/moy+wof/a+DkeTOU29P/iocExa+Ma8DtcqzuDKKwiwV+3VZvxei5niSp/c
egWo6h4nZCfUYkhBj5//HwE6Vn+Ll4yuRX5q/csHEwIcudYgf/5ZLZbcvpw6
sViI4unLFs09XYs2JaeEJ3WEuHFvWL+VWC2qndY3TwwW4s2A+OSHkzW4silT
GBYlxMyezMtJ/TW4uVan7Xy8EHW9W3tE22twrY/50+BsIZqXS9d9TKtBX+Ps
/0y7hXjXLPLr0IkadPd8E7RHkWDu++Srskdr8L5qffSEGsEZI6hmaFCDI3E7
7EK3EvQN64x9u7EGBbs0+Od1CUZ1yL3S+68Gh/syFh2n+sLejZuPOo7S8VkP
kzNuR1DVU2duCKFjyMNMDbcrBL8onH3Ea6ZjWsq8hYvuECy2j70ZkETH/vUH
JAP9CUr8/Lop6x0dF8VfpUkFEzSeUyToDaFjkdSvynvhBJuTeu00veio9I3u
0BhHcLXIkNzZ23QUC/41ozqeoO3Rme3PHei4rvtBQQzVt/L7lcw7LehI9j2I
af9BcKP+dklxIzo2JJj+MMgmeDN4X9UWHToeXyna9TSP4OSOiwaP1eho25Zl
8eEXwYXun7api9KRn/3CemMTQe/vKqULhml48Hlzyt5WgqPCD8f7+TTU5kqH
bWkn2G3z/t6PJhrufSaxJqOHoHmI4rzwKhqa9uplH2ISLKPFRroV0tB+WkB3
Lptg2t53+TopNFzQ0lRoKCCo5CpvqviehqxaS7fThGBYWnTvrDc0TFv0L938
D8F5PNlb3Jc0bLAou76+n6DnmqjZlY9p6Os4nsAYIDh0QiYs2Y2GOdvbz9wb
IngpKGJdwA0avn7/O2BgmGB7xapsZ3saKhU81jL6R9Dkv7eHLWxoWJTgc9p7
lMqHlnSnphkNzwUnjEaOEdzpEn5N+iANs+gt4mHjBJOSVkyf0qahXbGMv/ME
QXlWaFDXNhrmD8c82TBJMFhGSqlQjYatMxKHyigWtwxJfy9PxfcpusFgiqC7
/7IDT5bTMDVLbO07ivtLg1suz6PhbY0ngg6KL4guvXJ4Bg07lBhrqP0mfr+h
OnZmoBpP50+Uj1IcwVBZrdxZjc8smnqbKPY2U97LL6/GOaavrr2m2LFY8Vxq
ejV66t502kax+XaFxy7vqlGvurHjG+XPno/y8bv8qnFazq6CJRQrS8lVityt
xv39e1aYU/EseCrTV3S+GjscI3pdqHhHRlctemZSjVKHtindpvTovCy9zXhP
Nf7NFf19nNKrtG3F8SWq1Si9aqWENKVnipHUvZYl1cgq/ZmaQ+kdkrMsMlKU
8k9vd81eKh8Xoxb3rm2uQljc4s35S9X3wkWzSWEV6tJ1V8+j8rvDc+G6rylV
eFBVadsiKv9i5+Zd2+NThcPbdUkOl+DfujlB052r0JWWH2RH1U+LvkR6qU0V
PinVK+D3EoxXnj1hsr0KL02oF73pJBgQMlN2+Zoq/GRe97boN0FXsf90f8+r
QgXdIbHqFoKGPNEnF5iVmDXp/tGrjuDmkyKJajWVuJ62okudTnBF5WTVn+xK
tN3yNiOzkiAvaWzxvVeV+Fh2saVzMcE6mdHtex9UYsFGDcWYfIJZ/iNWMx0q
cX/Tq6iUHILPrw9G+etV4t6q/FSn7wTVthG1uP4KNDqsn+YSS/C8uodHxu8K
vGiz31QnkmCk0vyaypIKtNxnfZwTSlBy2YZbQ+EVGKqcEPfLl+DwsGPePr0K
XPQjcrLWhZrPfZOLTqpX4MGldKe7V6l6Z/uev7q8AkvXa7lO2hNsa0qSCOWX
Y8Gi8duvTxLMzxCacYPKMb+7eHSJNsHxVPePk+7leJ5puTB8B0GN+Hljkvbl
WPSxUXR8I8GPYepRu7TKMU5jYdBROYIv7jpyn/eWocIRmvshEYKWWkL3DdvK
cPHpcZGn6UIM0HCn68qWYbrXla30z0IsXz9PwVK8DFP4rt0D74S4Z7X6r/vt
v3C6v0Eb3U+Ia6YcFtV4/8IXjqf8e+yEKMwVfHBuLEXV64VVVyWEqJzhNuqT
V4qmP0JsHk0J8HTqXKO3CaWYf6V5661+AdZGr/9b5FGKaYfeMv62CPCHp8Pu
ZSql6C/ayTn4UYBeegJaxu0S/BaXFvhytwDz9/OPbD1bguH3ZVUK1AUoYsSr
SjIqwQ/sCtU6WQHeM+NUvJMvQVEnzYygGQJ0Od9b+qKiGF+/+/b9ZRkfL/r8
zj0jW4yxdv3Pnxjz8VBFZYpYaSEuWV/zjavHw6e0ig0P0wpR9Z8oW3ULD0vr
ypMm3xRic0VfziE5Hur//pXYf60Qn5n+ideY4OIeYdHH3ysLMfy3YlrEFy5u
XJATlepUgLWq+lEdK7i4xDTJ//iyfIzau7n6ay0b05SeZepPz0eNuZ29+chG
438XGJtIHsb7+//9kcDGpxFyO8RL8lB/FX+XtRcbJ9lBHZkueai9Zu83n01s
ZLrdVZduyMXKaMuCe09Y6HjkZUj2WsTyGaZ/7FWYmDZUNL9UIRO9A8e2KSj3
oG98TP6efxk400Wj9atED14+5XHzW2UG1gxcy93Q140KxTtaY1wyMND8Zznj
RzcGv0p471b6Aw0NL504cqAbXbe+1NpyJR0fha+y1jnfhTrXT16O+PIVD+3W
3ya2pgPjWntfcB4m4e/0nUfL7RvR+qj019azQejecKty8A9ihvjd+vybgTCg
8WdOrnsOaHSLrn5gmQxRoh75ijOaQD3T4s/GT8lgdsTKuXFPEygFfC7s/JcM
vpkZp6/daQKJ6ESNKKMUYMwynG4tbIJxY8u2KWEKLJcuVpvb2Ay/U5LX4qY0
+NY+3zDyXStEXj1VqJX+FcarpnJEVTpgTd/PfzvzM4Bhz0vmsrvhXqXuwwFB
BrS4ffkXOKMHGuLL5yVJZUKoxcWTyrI98NSudY3ctUy4Qz4KJCx6oK9l1GiW
7E9QMPCtKC3ogZwizZhatywIMTilORTCAKvwdMMrmggXVjN2HtzEhK+3oV7R
DiFHX0Vq/AAT5pmX2HT4I8jJ8w4G2jIhb0Gjswkb4ZphvpZzIBMW69498uZg
Lty2WLh3op8Jd3+E3fEczYXDTza/WZTCggPvmisPW+aDywKSFLyIA32Pks4X
OeSDVYPyGVcVDoRc9Jra5ZUPhVXGSjpaHGCvX79pbVI+cDQPv3A7zwGfH/eD
ps8ogIVQfCQ6nQOllconfiQXwHDXU+knplzYN3KTLTerCMbDsqX0bvNA2GL4
IES6CLIezu7yeMKD4GyZFfM3F8F6zu5lb8N4wPT8dXD8ZBHYaDx+eDeLB95z
VyU3pBVBdOQKi+JJHhTLF958dqoYrLdm9Hm58UHfSHL64LcS2KilmaN0VgC+
Z8T+/PtVAr7MFs+nTgJouinSMfm7BP4E+rTQ7wrgUoQwc/bMUih9+W2RRBBl
T8quS5uXwvRLKy8qFVD2L726dYdKYVRcsmxoJdX/vnel7Rf/BQF1Mx18lYRw
KfNajtHqX/DG9eDf2ZuEMN5tE2Zh8AtSYs/ffa9P2W/dbXI5+BeMaHjc8HSg
7BsG8gK2lYHat/6v39KF8IXLS35tWAZODbfGXXKp8ZPdb9+cKgML04SXK34J
wVeZfue9dxmctWz3mt1C2d/+vCmzoQwW+JFY91HK/nmsDHLL4M/yaJej0wgY
RIfPLZykxs++ZD5TnEDTryecSqVyWG0ZJr9UisD4ivPRXS7lQP+3VaFSg4D+
Bms/5tNyqEl+/SZ5NwFfXVM3XkQ5FNp95d7QJSB3Ref4YHE5ZPssEUYbU9fP
Xr1QbFkFfE5K7AqwJ+BHXzI1d10F+L8/YOHlRN2vd45AEiog3u7ZNbObBC7N
GyuVvlABrckRbhH3KXubxvsb0ytgLLHFuuAVAW/+bmBWVEB1QludajgB9zsx
E+HdFbBkpPu8YxQBx0AH11nzKqEhclfhk3gC52Vrd2SvqYSffosenkkmcOrz
juHrmpXAmza2b8lXAodLpju3n6uEguHC4gXZlL+m9puDXCvBZOzGLcs8Anu6
qvoO+FeC78vyZfeKCKiPhTp8+1kJr5qrF1tUEpi3YeOF55JV0O0Y632ilcDM
rFeKOipVECH2R9OzncDk/rGeYa0qyHMv+fmwi4DQtvj0WfsqMO3xXbWKRYBJ
1slIeVSB1nLF4TQOgfZ7L39XBVVBWoZfgAKfQFXwSaududT423+mh/cRKF6T
v7yvvgrE1zTWRf4lkJOi3BjHq4Lpxx2t7w8Q+K714tUJ0WpYavMqfPcQgaSy
v8cWLquG+JRjL+qGCby3sJQsUauG49NaNv7vfWgEI5t2T6caRPU8H74eJRB8
bY3fZstqeB9T7Z0/RuV30seI7VANq546bvs1Tun/TCgR4VUNAe+3BiRMUPov
Ny07FlpN5VE21H6SgEtcho9YcjX43T5hOH2KysdmmX1YWA3LazXiblN8Hh/+
d7OlGqyTVD/9ovjUIW6Bal812M1uNxuiOIGvvLdvGg1QYVXCJMXKX6xky+fS
4Ofz9o/dFL+782IqbjkNbs7XORJDsYx2bvv9NTRIzfOP0KI4fGZ/9gl1GnhP
7H79lfJnWaXi222aNOg80605i+LAQMt7C/VoUEHXf6xB+T/f6tkJ/mEahNww
uw9UfM9kc3aWHKfBr2QVJUUq/lmsPqmYczRo3iDiyqT08vq85t89JxqUt+m7
eY0QmLph3mThSoOg3883jVN63935JH3zIxoYvXoZYjxIYFgkK3iuPw20ojW/
3u8ncKNEeJMdRvnbEOj9/A8B8kLOrCCOBjHaTQudCQHWiseL7vykgXhr5ckG
LoGzXRl/jxXT4MDSbLmjbAIdH/h0dToNPrySjP/QS6Bxq4k/g0kD892bFrI7
CBwbe+iEf2hw8cODIXobgeq89MNh4zRIbDBIfN1MoOTwqrnGknQw3TQt5HsN
gcXqXUuvS9PhgW6o3JFqAqfnxskGKdHB8pjFxtJyAqPlalubdtKhp92ad6KQ
gNqB3SdOn6WDYu0/bXFq/txWEbHzdKCDMe3YyQ/U/CqaVegYe4sOBl4q0ooJ
VH6LD3qyn9FBQm1neH40AX/dE5+ufqXDnAN+K71fEGiTl/kSkEMHvrlLu4oP
gbXTerK+ltJB8qfgSqIngfzcS7SRNjrsYJydZn6LwKCW6/D9/2qgTlsseYsN
AasdofovzWvgReqsa6vXUvW9zPrIl9M1sGCs8idNjkD/kOzx+ks10D15Zfu5
FQSef/t4RcqjBmYyvrerSxDAzT8Coz/UwLtVSfnHeEJQWN/YlTpSAxW7TQXd
cUK4OiecVzutFvpfpP1LeCOEbN6pwcE5tRBdn5hpHigE83jm7J1ytVC89JHH
0ftC8FEe2pB/oBYcOrJX/7YUgkBuiXtNWC38HW05ZzZDCDvuRl/Li62FUPpD
L5d/AvCsW2+XklQL2H5L9q5QAEsfGxzyza8FqZcrp9SbBLCHf2uFIbcWzjdf
ddWJF4Df95bveZp1oGVsvkL+gAA2HYwiKU11cPJX/cTS63y4F6vWE9ldB9mQ
qpJzlg/FEz8afPl10HY05ZihGR+sUujZV0TqIdV3fdfCHXzwXDL9uYpKPUh6
GJ6xGedBbYedStStetia9sZT5D4PbjqvO+O3tAGcPLRrCm9wYak4yTKXa4B/
UZWZH05z4Udk2vLVag0wcZ4u5WDEhfEyTVri3gY4LeHxMlKJC55y+6HsSgM4
e94oi2vkgG/VuVX/FTTAqYOfew23cuC9SkSzq1Mj7JdoOh/WxILGtgUm50ub
oGPWcuvSGgYYPrNrcq5pgnLVU625mQzI0sw85dXWBIUJsQpxMQyICj57Oaqv
Ccz+2+ey6ToDLhp/f9iyvBneln9JPLGAAaMFJ9IP2zdD7P7WExIHekA64b30
dvEWEAu21PNK7ILTd3azZh1qpZ73Cnr1nm1QsG7704L/2qGqKN0qPrUUlMSy
2LH7O8GEMymxzSsRV2Vd1v/PpwvGWh/K2A7UoMjotE/Xu7vB9qWAkbyuC0/3
NPd7sLqhPVLC56pBF+ZWpOx5we+GH+1f18me6cL7kafqPgx1Q3JVqsSh4C6c
0sucahPvgaYH+47VTnXhpN81831beuCdv9iZJ9XdOK7YOV36YQ8sc4+X6z7N
wJPz0w+vfdIDRm/0DY/eYWDWyIvQbb498IWTbJT4koH3yndtOBrSA+G7VR8p
5jNw7OprK+/EHoA9kdLy8r04+vNwal9dD1wfcLLZ0N6Lw0ezTxUpMqC8zFN8
VJ+Fns3Jv/esYwBr2bQDPtYsnHcm5uSPjQzokBl8PObMQqWrj60SdjHgj0J/
mP87Fpr6HjV/eZQB22ccV7o+xcKUsl4jazcGNGX7FIylstFed57WYB0DrNON
DW+JcnGgTCTLsYUB9gaT3jeWcPG+Sf9OdgcDWp+IRB1dy8WQM007WrkMuPTc
ROKLMReLPWK25on0wtI2UaPZEVyUz9qm9kKtF2aF75LhbOZh61ablYoPe6HM
PMa5T4+P5/9pzH/0pBe0JSMbvpjysS97zvRe316409sXb3GOjzP2ZXJjQ3sh
YI64nbYXH9WPL8lUSO4Fu+MztYOQj/fdyi0VWnpBvspq7vbNAhTXiTn0sKMX
/CP60/+BAF/NvKPNYPTCh5ymqnAjAcb7KanEkl54PE5muF/8X7/4YHjNf0yY
mJL7++ONAJWKtwev2ciE1pDt+8YnBZjydN5TLw0mOG2/x04SF+LOI71uPTuZ
IGFyYLH2UiEeaQqwe6fPhHtmK5om1IR4myvYuuYEE8qXSab2WlL97rzYWnlv
JjCTTiufjBeiea1rieczJiyJ183480WIna+P/uz2Z8LPN+uk7LKFOCA7FRMT
zoRPukulequFuHqL1XX5VCa42E8f398vxKsWCxbKtzFha/yJrtdbCNp+3BCm
2MWEhZ9nSD7eSdDs3+E1a5lMoMl9m7TYS3Bn+AuNjX1MKDz4+0/EYYL/dYhb
7ZnBggeXfF/kXiA4skG1Z68YCzTDOLwsB4Lc+weu6M9jwVRafF3YDYI0eR/3
Q8tZMFiVrT7mTjDs/H/vrNRYsPeOpoNREMHn6QpqpzaxwHzHLG+zUIIes/W+
ndnGgp93Rif3RBA8F+9ZclGbBdbXz01++0DQYiza+Io+1Ycwku7qJhI0PJTX
7GTIAjQvNkhLIbhBOMVzMWVBao3hty0ZBOVB5qbrcRYMBN0x/t/7ycX+eybd
TlHj6SMqO/MIjm5yW/DoIgu+j3/xLColWHhzdGvgPRaEim+5eamB4PdiqZzg
ByyY0aca7N1M8NMyzX1h3ixQWyrZ7NVG0Dfj1vFofxY0O2hkyHUTfCD+ujv2
FQteLhM5ms8g6Hzi++WPYSxIGW6Y0mURPD4x4JYcS/mD80O5PIKHDi+e9eUT
CzjFxH2+kOCeyC3+35NYoGPQdH1JH8FNfSZSmV9YcE239vr4H4IKe6/HZP+g
uGC2W2E/waUBL9flZbPgdUWOn8MgQbGelK+F+SzYcfH4p+EhguNbaFqlJVR+
Yq1KbUcICh+S4vIKFjwKsuUl/SPYVT/PuJrOAhvTDQvbRgnWKak31zSwIGzW
2x3cMYLFt4xsG1pZ8K017nTzOMGM0iu85k4q3tm2Pp8mCCZKPXf+3UvpVzMr
2WqSYMSlhIlOLgsOPeHV8il++bPMm0FY4PfEY8hmiuDDOdz57AEWEC3TpV8p
drEWC+X9Y0Hh6uVbOBTbJ6nIk0kWRKe9PvS/c1cnp/Yl/J3Ohge+2bbUfhEP
G1/YOjSbDR1mATerKN4b7Z39by4bEjJ3P3pM8da/cQYTkmxQchMNkKNYSbeo
WmQ5G95d1n3zhvJHKohhOWMVG1bbesWOUP7v8JJZ6izPBvOfDNoais2vW9X2
KLNh42XVp6pUvM5nXvkfW88Go7tX6XMoPQKMaUYFm9lgc2/8Q9n/3k+ChMSW
HWz48lBr/jlK32p1g9IYLTb4qVfMbqb0F6568EhSlw3ngi8Fr6XyM2dulo7n
fjaUWM7INKPypzo+NPXHiA36/kk3ran87udtyj5zjA0zaj+UaxOCj3592L73
FPX/+qPGYVyCsT+6B1LOsmFpgdHDBWyC+R9WpcnasyHbarO1bS/ByUeBaiLO
bNA6ulg8tIOg9M0qjtMdNgwHfWK4UfW665zYhw53NhS/Mb+2h6rn2zoecviE
DZYsYbJJDcHgTZnt6n5sODGRZf++iuBX2cHwiCA2DDlf7K0vI/hn8tJS90g2
tAb2bCnNJ7hAGFcriGXD1JXO+c9yCKr/7vS3jmfDP5EluWszCV76aS6h9Y3S
X1s/dZSan4xbOiLjZWxgkZgrvDcEp11wy75MYwMbV3m8eE1Q1vyHa2s9G5aV
aAVIBBC03qo+mNnJhgORKbXh3gQb+qS4d4Yo/3evd5vrSHCgw/QDZ4z6f4u7
kT+1Hi2q9jt3XJQDlj/lzchpgsaf/+vYMYcDZ5OLVHSOEfxl/6d2WI4DOYMD
Obu2EWRbqr28oMyBhyEGStHqBGfuv3C4UY0DE9fK/+tRIqij9Lv0+3YOxJzs
Mh5fSjCruzT7phEH9tC2LfceFGLSiagP/bc5IGp7fXgyQYhbG9eMznTngNXM
zypNMUL8afLh0AovDgwhjR8QKsTSA0l/tF9w4Pb9IpPP3kLs2Z61yzeaAzaZ
YREuNkJcvripWqWMA/Id67vPSggxwu+E/O5qDnSM+dVZiQhRUaLD+UgdB46d
3zW2ZVCAm6cxpVzaOWBHb1r4ol2ARn39Zwv+cmDGtBfRrckC9KyYP2K9kguD
K9YFDxwS4Oz9gYbXZLlwUs59z2JtAfoVLH37UJELlxLntyzdIsA3mat0EjZw
YcQrbnXRcgGmf1z3fESXCz5RbKOSbj7yH+6TDbzChYWDowqO1/hooeWxvzSb
C5M9zAfxd3jYNsicn5/PhevJrEfB9jy0TTrc+LOEC1LHc20uHufhFZnV55Pp
XFjwpqkmewcPPUWzvYJ7ueAIGx02DXExqWg059xcHhw1+XXrwBUuzjjsoiFq
zQPzjRfF0/Q5+HRm+/joGR4sca7zu72Zg/NRv3DgPA8k55+frSzDwRUblxxj
X+VBTgNdevcIGzdIfr1a/ZAH9ge+te3/xEarhj8JbxN50Ll7pcnETDamnnKQ
30ntg4UWafYnUplo+61vVZQoH1beNnY7F8rExXOcpWbO4oNQvlPN9AETXTJc
F9Qs5INE4pIKljETdy72mbRX5sOq0rqZPcJezP8V0xJqwge2+ZxPe5V6sW5r
U8C/j3yYrxE254JXD46I607PMBNAakLcqoKxDjSh79q2KkQIP/LTPsA1Oorv
ksjLekv1FUYfxXesp2NebMvBk/87J3d6pdtKDg033r5zJjxJCEqxX9tiT9Nw
nkz6c6kiIbxuuaL76m0V/rqyuWfJXyEkGC2jmR8pQ+3Za/3nHSKw+Yx0xuo3
eThybWRF0lECUtO+3Vu+IA+TW0vijCwIxE4dvDHhlYurk8//fG5L4PBq9wPL
GnNw3CyWKX6HQB52hr6+kYnp72S0Zr0nYGAhsaX7fSo6ziUl76m+z3LO5dC2
5ymodCvHxCCVwIngJ3GPepMwyND64qMsqg9rW7875V48Xv8TFji9loDYr/M3
Xn+KRtUTl1a/ayKgfifu/FpOBHYVan7Saaf67FNV2yfdw9A4pCnnAYdAkLaW
2aH4lzh72scDclTfzLNkl0V5PEW8fKsud4DAzs/Rb33iH6BLvYHN6VECqvtU
qr7FX8P/P78L/39+N+f/AL/qfu0=
"]]},
Annotation[#, "Charting`Private`Tag$18242#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"t/s\"", TraditionalForm],
FormBox["\"in/V\"", TraditionalForm]},
AxesOrigin->{-1., 0.},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->{240.8046875, Automatic},
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 1}, {-0.9999996658276197, 0.9999993650500513}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{{{-1,
FormBox[
RowBox[{"-", "1"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}}, {{-1,
FormBox[
RowBox[{"-", "1"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {1,
FormBox["1", TraditionalForm]}}},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.7513511874867783`*^9, 3.751351196468894*^9}, {
3.75135129210126*^9, 3.751351295783876*^9}, {3.75135140390935*^9,
3.75135143054405*^9}, {3.751353108616273*^9, 3.751353148209621*^9},
3.751353210111536*^9, {3.751353271164962*^9, 3.751353292465996*^9},
3.7513539279780407`*^9, 3.7513545277467737`*^9, 3.75135581575909*^9, {
3.751356187375073*^9, 3.751356196344239*^9}, 3.7513562561626043`*^9,
3.751356344702463*^9, 3.751356424381041*^9, 3.751356463159862*^9,
3.751358974139076*^9, {3.75136078527812*^9, 3.751360828400824*^9},
3.753434380105475*^9, {3.753434585996805*^9, 3.753434635018491*^9},
3.753434665820651*^9, 3.7534347283856287`*^9, {3.7534347756034403`*^9,
3.7534347833573236`*^9}, {3.753434816931365*^9, 3.753434861401379*^9}, {
3.753434938374501*^9, 3.753434962903234*^9}, {3.75343509267546*^9,
3.753435122339596*^9}},ExpressionUUID->"46d63278-e796-4f9c-919a-\
3062dd7b3471"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}],
CapForm["Butt"], LineBox[CompressedData["
1:eJwV1nk8FusXAHCprIWINgqpVFIoXdwcV1JIhVRU3ig3Za8skVKhVLdcRaKU
5VqiEEWSQwtCiuzZ3nXmXecNbVL95vfHfObz/czzmWee55zznNHzCXb1lZWR
kRmjr//fjUFL8Ps3hdfLTULqFTKsg78vvvh9gsKbS0JDGa2RUFpusnTsM4V7
Ne4hs+UimBo6+/CEFFoeX+RW0JwG62fF9bf2UOjR6z2u31AANuxPzbdKKPQP
PpKxu6IKXC+8LTJjUNg/OMWYFdQE1//66LDKk8KYm4kafkZvoPMHSSx1p3Cz
mUHq3/w3sCtkmsF8JwqffCicWufdAns9rG7LrKfwm4bkQ6JTGxxaWXjlrQqF
rxfLLQ+Q6YCId3GBh2slmJk+ruUT0gNXhOE941USHPCeUafc0gPZ8kf+Olcu
wT072qdaLOmFVnDWvFMgwfqW87MX9PaCfqnm845kCZ6ytXxJru+HtqS8GdaH
Jah/v+PgsuEBWOraVDRbTYKjs9/PkOWOwJ9B1ZrZShK84P+xRE+JCS6Xis+s
ni5B7p1W8pcxE069SHJznBDjg6N9/45GMKHD1OPHGY4YBYotV1/IsSBGQ+Ao
rBJjVOzykpVz2dDZqSyo9xbj0P7xJbXKXDh76HFt0T4xhs/XPT99GReMx72u
p+wWI2yqip1ny4WLGo/+POIsxr5Cu8MFEVzY4LrnmpqFGMvZ722PjHAh713u
WoaaGN3NtMLKC3jgxtim6KAsRtdUj35OHQ9kqK+DpnJidFk8aEL08sBTxemC
3KQI76jGf2AoEKDq/KnvASFC7UqbfENfAiKbN5yZrBVhV8D6x7u0SFjiSbjx
nopQ61FoXNVKEjr4SYbvK0TIvSV4RNmQYKTIac+5L0LXJ5/tho+SwNx8ycAp
VYQ/Y726mmtIcHzd/eZWoAhbAmUzVD34oFMXPHu9tgijDvk9XhQmgFb1dScs
54gw4OvVjn3xAojynfiwQZ0ef2lKR2SKALqV4q/bKdBe2rB722MBJLmnq7uO
CzHZLTkxbEwAU4Wv1AJbhWj47m4G+4gQHm24FBLSKES/77vcDCOFcCBp+/vj
L4T4nBy32Z4ghJp1/deiqoSYOtMm3i5bCOGxlMrFXCFObnyh2tErBL7m/Jk5
p4SYFvn8Q7aNCNL8hgPyIoQY9i4vUs9ZBPbPclsLjwlRfhV/Y7yHCLIPrL5S
6ifEkW+LJydDRbCvyE65dqcQ9YYmc8uyRPDOJlixz0iIjyeMV+6cFMFj/1fT
VQcF+FGJTPznrhj+0A0yyesRYJVdX1RzoRiqO+fs39AhQDtFl2PicjHUbfCv
8G8UYIZlyTxeoxiaVdUPNpUJMGhgYXmeRAwj5Yy6swkCnKIrw09YLwEfP0XR
3LMCdL8gvW9uIwGudvmc0mgBVoTYd7ZtkYAgXi54KESAxs7ZvCoPCXze/UDH
aq8AO6XaTyKiJKA0ORE1vlqAO3f4adVUSuCf0ty8yysE+PJZYPoUlICa77YO
/SUCtNA7ddqkQQKabVnLXeYLMOdGcc+OTgno3tvS+2CaAK/uVGpPoiSwzi51
3eE+PhZmDb810qeg6ht4//rAR6MSh04DQwosH/CvpLTxUUFFtlvBmAIbrQ2c
ly/5WPJx39IUCwocSXay7kM+Vlpl+9Zvp+DAFRNp3zk+WolmFUdFUhBVkZzw
NoaPs0L3VwtPUZAyMKZdH8nHtVsdw7aepaDZ6IlDQRAfvYqmrhxMpMDsrWVO
uCcf+0P+XrQhnYJtnzMsjrrzsdfvhc6qTAr8dH6+27+Dj65F381nZlNwOxAn
7ez5ON19XHSnkAI5FbtdGqZ8HIuZWidbRYGu+X8iuVV8nHc6jzrxjAIrL7nz
E8v46Kh+M72nloKQh00lTB0+ctvuXQ16TUHfNmfFUkV6/b1p8zjtFIyHP7yb
M42PX9Ywtn/spEDlrqr5zd8kJgflur3socCWavc5/ZnEKwuCxb6DFBRf21Wz
lUni4ecbD34hKGiorHS1GSBx1ChfOUxAAXN4Lt+sh0RVQtLEEVGgteaj5oK3
JKbX5mfd/ETBmfeMYH4VibUDjDtOExSkf6ubPlhOok47C90mKajQ1b/9/iGJ
a5dvNnH+RQEZwmmqzCWxY4HyTKUpUnCddUQ/IYlE/8AY95PTpBBg0Vx18jKJ
1vFxX2ynS+GC98rtgQkkDgoo9+lyUqgpE0fvPEVibm6hxwl5KXT3bVPfEkGv
Z0aarJ6CFKRTSgusjpFoNm3l8QbaS1yPden7kdh//VT5D0Up2ER98Nc6SGLw
o0UXLitJwTN7raySF4mr49asmK0shRPNKWk/95CYqnw4M4X21dEvxp/cSLRU
O8RVnSGFgvl7XnO2kTjfsEzmPO2Xtk/39jqQeLSu7pOE9rfk6IsIJB65EuNZ
NlMKhHa9wN6S3j83FVRRob83T865bS2JQx2WeJD2qzVbS9xXk2gjZ7evlHZ5
9b+zBpeTyFvjdHOcdrZdz/FDBnR8CJfQNapSSGrT7hYuJPGXpqXwIO0ze3z+
OD6PxPNyDdOv0Q5i5adPaJB41jetvoz2vgDx5FkVEk/ar13UStvpiylDUZFE
xrKfC4doW8ZG1idNJdF4zLyeoG2oVLt47i8Cy6fKyfFpz7kxNeHuNwIT9IPF
TNpyCx3IpWMELk3cHdFBezz/quNDMYH2I3E51bTZJp3F60gCN1nfCU2n3fFs
nupzFoHvDJYxQ2nXbWKE2g0S+CAm8ZMN7ZJ3uR9aegisS1XOlqed6SFY59ZB
oJ5O16fX9PqvsFen9bcSeHKOZDiadnRg2IR3I4Hhw9b+y2kf/Vq9j19PYNj8
pOQ2er/3nJXBkBoCXcou7fSnvVnZXu/bEwJ9GitLftPxMU+5fP5MGYE5pbHZ
l2kbLGrnyhUTOIUwXvn/+GoUam25mkfgwC/h5kt0/GXN9t3XzCIwP73+yySd
L9KarBl3Mgh8uv/WusO0294btRclERif6u6pT+dXjecxM7PLBH7uDLA6Tudf
EacypTqewJ4iYfYzOl8vfrP1fBNF4IUu/QlTOp8jzl2s2RFG4MhpZY43ne9/
z2hb2BtM4Cv7mi0X6XrYqOvB5h0icE1tSNgzWSmY3s/cFMQgcAXrrnkTXT+6
azn5nz0IbB0WH2qVkcKvzcEB07YTqFOWNxb2kz4fg+M/61kQGKz6Y5n3OAX5
35t3F5oReI8Rf1tK12/qebXqNcYEGs6yLgiiKDh+M+M0LCYwNeqJlzld/8ZY
Jr9/JoG1XKuVY0MUaDt8PcKRp5+fTrT+8pEC5Q9/tvrLEjh3nUIK0UvXN68x
KeorD9MzwwdudFCQozI0L43JQ87TZ9Fz6fMqeS/IWwzw0OGPu0p36ik4V3Bv
vK+bHi+1XaRGn28+tgffLWjlYe1oY279Ewr0w8m4u094uGlzR+aOfArUXzoc
synj4ceQ1I+bcyiQVStiMIt4GL1Mf9WquxSwCgMtF2fx0NtI8r4+lYLswVEq
7zIPdbsP75sVT8+/Yufg5gQevi1lnIuIpeePeNxMxvJw6FmGZUs0Pf+syP9W
hPPQYKv1AqtjFOht+un58AAPHQvPZ1p6UXCvWL7h8Toe5sRcw3xTCpK++5Xv
WsNDu1HO0iEjCmLtm+99XcHDYN/LbJlldH8ZuRJtoctD+y0dssoLKFg0W93k
uRIPreYkuqyWpSAzWvv2q2EutqS1DWW3SuBqU0yibz8XD8SePHj9tQROaw6H
y3VxUUPpWElQrQS8SrJctjRz8Uf10CpuiQR02EvlWyu4SGiW5Lb9K4HbjibH
PiRycc4ttS0nXSRgoOzY/D6Oi77+Db7pDhIoavHRbzvDRd1dxb75f0mgeuuN
jqYwLv6OccuMM5HQ/eSraa03F73rbVhb1CSg5fZ8rMCCi9tltI2G34ghU6Pb
KW8tFxt7UqnSOjEs6ZTk5Kzm4pvN+dUBlWJY6667M3MJF+M/PeVm5YrBdff5
iuuzuHhrxSHprxgxXNvrEHaaz8GsqxfrfY3EoKXt8zaaw8FruSmaTXr0+wei
lpwc5uDvnem26nPE8HB/cdfxLg5GK+Rd2z9FDK0MVfMj9Rzk+1pXt3SKQOFQ
1xe3Wxx01XSxYYeL4FyAd+RyBw7a1mZUdeQJYeiq1+3qjRzcMc99rPSmECzL
9tY5WXOwP8h8V8BFIYx+dlcIMuMgGfPr+kn6f8/7jGPaIx0OOl9qestbLgSb
ZLMqq1E2Jjc0MtpzBHC7Ys1Aq4iNMzrjxD7JAvjWvUrGi2Ajd4ezz9tYAZQu
MNwSO8BGxS7W4Mr9Alj0n3bvqwY2NhQvU5KfLYBfldO/OWewMa5E7cvYST54
9stqD6ewUblG+43Ulw9PJn9DSBIb/QYv1dS78CHor4kLyfFsfMGIfjFkyIfB
ZsmcnmA2tvBn+E52klAz2LP+gB0bHfJ9M2IMSIieej/imJiFo3nLT2zK5EHQ
LS+5AyQL4xpn7mLF88BntUaKM5uFc/p3vtoeyAPHvaceGfax0GRxuHGGFQ/m
lm8TD71iofbG1kxRFxcqfMZ8nG7TvXzaK3nrKVyQ1P+5zcCJheoL9a0617CB
tfvTwCx7Fn7Vqj0uq86GLvF//r9tWNhtKvX5PsqCmnmqif3mLJyZIJ9rU8GC
y6HMl0n6LNRoPFO5ei0LDPUSLH5+ZyKh0H0icDkTvGPfGXQXMLGdEdXg3z4I
u/ruWg/mMDFttPivyYRBcDQN2cPJZKLWDf8enT8HYS1H7croDSaaZSXIaP43
AApbXMdUzjKx2KR1f1/oR3io2lW/2YOJZeWmI7+/9MKPzH6vp4pMnLYwL4VR
/gFSnnPTbh8dwaEN3912uteBV2T66fW+Ixjb++JRigKCodn2Qx2MERQKD9x6
6vscqguqViu4j2Dlo0JGm041DF2/3HAcRnDrufT5WxPKYdlRk3HH2SP4z0KN
U9Hyt6C+ZXmkxfQR/J0+8VKp6ST8D8nxTsU=
"]], LineBox[CompressedData["
1:eJwl13k01N//B/BEto8tstSHQkJZKmVpU0mlReETqWhPltLyQUmESqEoyUcS
ihARIhGeZDBhFjNj3yYZyzDznvJJoY9+7+/5/XHPPY9z7rl/vO7zdc+9Oicv
OJ2ZO2fOHD45/jcHe75WvP+9H9zU6VpZaiAk0k95G17qR4MiNzFisgQJGjTz
ox79+G0cb3ApuRQfxNOaPzn0o8RI4rrPUDkkurZPpy3rx+1bd//iv69GQsRD
5/2MPmxT5HGGTRtQ3m8o91q3D3XBL3dJsFtwfaNYXpJGHzpW5sYsN2Fh05NO
+0iFPuwrnzL+N4KFaqeoWI/pXmT/uFjkt46NhroxZR1WL4oWvzonnsQBJzd/
YUJYLyplZqWu2rVDeGWtQSi3B5Sn6fp+zj0o4MhRfdt6sGFbo1v8ix5cWs3z
dG/ugbn5hZBtRA/+5T/OWf++B/Ne4pX9nV7MuP8w+R7bA+cqhoR8UR+kbcvX
em/uAdRV1VQCuViqtMXmQEo3JqI8tJ7HDCBm1edr3o+6cbXruEFNwQB+OoS/
Db3bjXNn/4lKYw2g+SFFL+9yN3jht21SVL/AT2WXlOTObjz5dm5ZcuIX1Ks5
NZcSXThAT7HriRvEKssJCfpgFwIN3pgpFQ4i6WD8psHOLmT4OUGKMYgLiW35
SpQuzPCe/rKR5UFj0ZGHXoldCA/P6voWzIO31mmXP7d2IWQ6fDj08BA4m+bF
rrbognpEXZCq/xCsj2Y27DTqgtmgluBy7BBUUkes/FS70JHUURtZO4QK7fN/
0kY70RF2ir1q+TAU9AK4IXGd0FTWsSrkD6NoxV3vgS8d8PnPtLDbbhRLWo6X
GXV2wPjDjqetbqO4d2WdtD+9AxE5Zz5kXBzFGQr/pVRZByT/KGXW/jMKjaP2
n41jOqDp+DtZfnAUwQ+VXa9YdWCqjVeo5M8H33Iss9qkA66qU/JhEXy49NV+
l1naAYXdG62a/uFjlZH/o2T5DgicSuWEZXwMUNrpNQPtWHh7yUr/X3zY/Uze
Lne/HXEbxYJqr42hJMU/3jm8HZbx0itFkWPQ3b7vS8qVdmz3K2+aThzDzMPf
oatPtkNVlP82590Y8o1OVrhYtmOuKZMZJBrDgmMGa55/boNl8zp9taPj6K8r
1LawaENivjWydAW4/teUrZVxGyx8ZP7ZYCKAxuctXut123Bcmv+o1FIAh1+M
QmsFcn1je6znXgGqzYQ2O4da8WDrzrAiPwHSUleccU1oBWXgdKFEjQAbTS5H
Hr7XCiIm6ohRowAd5WV5buGtmO5q2reRLYBSm93kcd9WuMtKxWjxBAiTO3vH
a0crtnY4NHGlhDgZmP7q2iQH7Hz7Rbd2CTErOUa7Ps5B9amKE+6OQiTFm30L
GeBgKqy2VveQEKw3Netv0jlorbm49bKnENuG+puiMzkQHpr5oR8hhN5fmsJk
Fw7kKKtl/6sUopp7Sjl1Lwdnb1Oa0ilCuPnmWjy34UCLnm5q1SREfOT6Gy9N
ORDlXVy1okMIiWpXpXxJDtrHaCHmX4XgGT82wzs2jItzbGeWEFgR8lI4ksuG
QkSj3n/LCPgySnKUn7MxuaV+iG9E4OelNl2PaDY+qFufi7IkIFuqriJ/nA3b
Dh9htz2B/dKGDAtnNgxtpx02/0Ug/pBV9PHdbGQ/b7ONdSWg9ctVvHgtG1nf
DM2+nySwamvSxGEZNsor8+y7Awj4x+W8uTXLwufNh8++DCJQ/qXcJ3+ChUM9
7/LcQglsi+j+ItbHQhL/svSjSAIuTZqc7CIW8i6o9Go/JRDknFo8eYSFgKoo
O0Y5gerMNxe1HVmo2HBezK+KgMRPGO/ewYJt1m6e5EcCMUncjGerWHglV3rq
B5VAWr/OY9t5LLzWv5Ah0UaAt8rM0Xe6BZJ3TLU1O8n6hNvIJxItqEr1NNLt
IfBW79Ttsc4WhKqEaE1/JlDvleEfl0+u3zTwrGucwB8fildXpLdAqnZe3VmC
gINcnYCX2IIL3jaML18JdObzzqy72YI3y74VZk8SWDxnUufU1RbomVglf/1J
4KSjZN+98y0QFW66v3yGwPiEvgv3YAtiXntkePwm67fdUlnWvgVPYCwomSOC
f8JO+hqbFthddf6zQEyEWSvPHXeMW7A88uXmaHER5oe8sjAVa0H2VS/JXkkR
It4ZUpV+MHFnqkjjgZQI08KsQxPjTPwts5a/QVqEgWOZ1993MBG2y58dLCOC
S+Iyhad0Jp5U7iBUZEVoZGakBlOYEDt+mfWCdNHW9I82BUxo2fz8nvOHCPrX
dA8sy2Sifm72Oj05EZKKnvOkkpmgSbrvSSCtMKZ9hf+QiacFd4zF5EUIX5om
TbvDxIqFYX2nSU8eWZL0JpiJT+rRJ2tIe8enGMX9zcS+XcwyNQUR+pq1Kv28
mGhRO807Tdpp3rN9B48x0fbBZiiXdP0mTe46Zyam9zhWjpFeH/D0kuYeJha8
d/fRUxQhP3+R+O8tTHSzFn91Jq07/CT+swUTvw6s3R9KOmHJQn2KMROFXP2I
dNKyromlmbrk/hKeCSAd8kB9V6QGWa/NTqEc0hPUhC4fBSYovw1tB0ifFVM7
t0+CiZosjYER0u/+XjFz4l8G1O5bHP6fUwYNFxtwGcicCn3NJR3hbLB1vImB
a0b9HS2kfeuXnS4sZWDdAZ3+D6RdLPXuBKQzoJg4BymkrbN1czbEMrBIbsnV
a6QNFurQ5gQxsLdYSnY/aaWoJaI6DwY+hZr6aZL+Oa2lEu3EAGW3qGSArAfX
R9PCwZqBNmYc/Tlpas+iQ6orGGgssq08RLrAfuH1LlUGhOe0wmRJJ1app6aK
MdDppLWwmDwPz7QFvOWddDDFtGu+kufpMF9FmqDQYXbxDf02aavw+UbFBXSI
dtzIVSYtc1rhkvVdOsKuTjWrkfn4xpGLF/ej44F2gEIMmZ+u7X+UUo/Rsbqs
XWOWzFuOgfR/TpZ0/GKPh1LJPMYlSmprLKVjjUFply7pazLztvUq0PF88tF3
fzK/u8fEIs8O0RC9+80ZSTLfZm5zXhuzaKiv2Plu2zwRFtFm6V8raVA+l1kV
KCHCWP7MguuPaVCoPj3OmCsCZ8m05dYwGiopx+REZP9UPPh5WPI8DQlZBzul
Sd+7/D3tgS0NWUs7e+xmCRhbEMYvJ5qR3LPnsCTZvx6mN26U9TZjSnXyU9oE
gVR9RRatoRn9vf9Ql5P9rqy+8srk02Ycy6bulSLvhx8/fGt22jYjQ0fFleCS
/SyaVXEzbYZc8B3D/3oJeI/EeFzUaAY7SMJ8qotAT0f+H0/Gm7Bx7VX2Bw6B
j2VCZ358E24KfZheDQR+FYZkz4Y0oW79GpORWgLmOQozyl6kv0WeOFBNIDvJ
NG3DpibcknVcOPmewP0gX/49XiMuE0tXub8i4LpJGLLSohHy3ZVuryMIxJmH
tGzTbsT7BzKqYuEEmkwU9FxlG6FES8qwCSZgvdj0U2jfJ+RMCmaj/yaw9Pd5
FVbEJyxJ8LplfoyAsFqQ5ddOhcyRiqEWMwIGZcHTd2uocJH9kcs3JnC8UN7+
WS4VSqfKfgr1CbCfm3yru0EFr2P7p7JFBN6Hn9+obkjFxiHdBGcxAjdtBcyy
qw2wqdc0i20U4qPd+P61pxpwaH6xR0CtEHPsx+j59g2wpOrZ2VUIcd15tDld
twGCEcPnuXlCBHjwqPeb68G5W3jrfKwQnnd7q09o1+NLmFtG7T4hMu/1bO6R
rQfPf8X7nTuEGHzQXeXyvQ60fXvuFW8S4sSTzoo9jXV4OvhjfKexEIdzWt+b
+9WBoCZXOkoLsbeZViBDpUA+cGNBywcBopjNK28VUSAq0RExCwWgcpryZ5Mp
EEjuT3mXJcD23k+vJy5RoCYu92LtIwGshXXZvX9SQJPvKpn0FGCVUlVa4YVa
uJsTkucVBVA9kP/gkPpH2JSoOXTuGEeRfnT5dvGPmNTvl7BaPw6HqbODq4ka
+Lra2QSZjCMqRcdKtqEGW5zN0vJVxjE7Et9fHlAD50dMVm3fGIaCg0w126ox
00BfGHJhDDcdXF2lP1Zju/r+PxVPjEF7qXn4v3nViLe0Tw5zGsNhqrC1+XY1
Il/c3itrPga68sngYPNqxKrynmX85MN3/8PEyuVAnNH+K7RAPrL/3T3+WAw4
UWVi6e5Fvg+fSGzx7ayC6Y4PUk2u5Hty8Mrw4sgqLNvw7OtmSz42Bx61CB2p
xL6oost3v41CKd2IY5NVgWcP5+09dnIURZN1ilS9cpi8y/jls2wEMTkvPlpP
lSH86O3o6woj8Dl6w7+EVgZ38dzPR34MQ6/eqvtFQBkUg42jb1OHkfA4NzOY
+h7dylNuQZ7DuLb24aY150rRymd/y0gZgsvIedGrLaVY6dj9V+CtIaxJ3p2u
rVqKUM5rRXXvIYyLS8goVL2DA9XXOm/tEI6yAzgjiu+wQBCktqGBB5vLbj4p
b4uxi3tnMO7zIBbrr1usercY9HCL9a21g5jpVG2JdivGRCClpPvlIIq3MiwC
5xXD/m3b8BqvQejPt5l74OBbHPFXFUkLvkC2wOCJzEwhZg+NLZUaHcDLbt79
0Vv5OCdanFNUwEXXdbXUZ2vycUOwt+rGfS4UFu8scBzIg8/waKOyNxcBx7NZ
ZZvzEBMq/ixKl4sdPG/1qOlceGjOrwrV6ceIkEhbcfEVkk/vXR9D6cGKudNv
fY5koPiWz6Pvxe1wd9Qs7j4VD61EdnZUPRW2siuzuDxbxGb8/3/0/wBGrlYM
"]], LineBox[CompressedData["
1:eJwl13k4VVsfB3DVFZJ6U5kyViJkuurGrb5NSgmFzKFCg6E0KEVEpDSShCKZ
mgxllnl2DGfimOfM55x9JEmJd7/P+8d+9vN51m/ttdZev98eFE5dMHVezMfH
N0oe/zur82mk9A3th8yLXxXLar3xestaZvr6Z5D7oGmc6l2L4KPptJfUZygK
/vzton4dzJ8P1nttfo5/b9uXSXdSwFM4Uq7S/QI2Rgobn803YpOuTHrY/lg0
LdN4aLOKgbpMh/2f7iUixm8+8vvXVuyoUqtQ6ksEMz+lWH9XGzJYs3tityUh
77bC5XWRbXg+G47QwSSs8LYPOXawHU6o1XPemQLDP0NZLfEdWKBoaklOvkNa
jVll7a5ubB1YJHvbKh3u7YpsCPdDvcByUvNdOg6a/xXsuKUfm8JSK/tm08Gd
czAyMOmHcPzHra+NMpDN+lTnHtaPuaNWXQvcDOh2Xnm3WmwA3Rnpm0u0PkNu
a+TxcdFBxF20r9yZm4WY2qJMoa9f8dJOKC2iNwuLjijDYeErXhhkRXIEsnHt
sDT3ttQQnsgvc31llQ3W+d4cjaND8Kdlr/ozm41LtSmrdPKHcFJTxKFwRy7u
LglTlwoYxgbel1m98nwk2NUn6k2OwKdx353vnHzki3mO3xYcBet9/Yo0yQI4
992/HCk3ivvOnRsUPAvwc4nsR3WjUfA6fhkJyH9BXla+mnjyKIqrdN8wfQvR
+Gz1unUmY5BIKFN7+K4Q8iPFVR6nx3DJ/1DugZZCuHxMW4i4NgbFf60b8tWK
cLaF4eIYN4YHGdd/xHUWwc01vYnDHoNNTO5hN90S3K/8RdfwH0fWdbQoOpdg
8UBUZP/TcaywqHHofVKChbjOOteEcZT9p/WK6WgJ2A98opZVj2PNvpsmLw1L
cX9StN5baAI386K9A36VIiirqsX23gQOJbQ3GluVI//TVuk5DzZ4QWkuVe7l
WJs6YbTIh40XZwMX/g0sx5op8c2jIWyMbtmitTmtHCezFNJs37ARkuf/bMlf
FbC+oxnZy2SjtlHJNi+9Agf5688Fa3FwMWNuSr2qAnfzHjOKdnAgEU5/kNRR
gZ1FitPtBzk4a3WzOIy/Ehe/blxXdoIDwcEmBXfbShjl7ckzCeHg4M+rowoC
VQgIXaQS3sYBt+Pw7RfSVTgRfX2/ygAHz4vkpFZqV+HQdcHPbyc4GA6oM5yz
q8Kui8EydvMcBIvIpLM+VyH3lcbu+PVcVK+vvBpqXw1q2Yb0ChcuPPijViy+
Uo3JAnlWnwcXYqPuKdfvVePW0GnfES8uXFLF252zqqESdJTyKZiLpdtdd+xe
VgM1w67cnUlc6BuJLpnOroG2CvyO9HDx6KTQ5GxdDcT1fzfGfOWi7Spf73x3
DVKkEiXax7k4H8stEFxai4qAbdMyM2Q8QbkkbVELcY9b/MwVBNqeBg7s+1GL
n7UeAb/1CCgk36AZLKvDPr5M5t+7CZwv8Cw2kq0DtJea2uoTmBtwiLY8UIcb
YQWS103IeJ0dpq7P63DRMCZh/BQZz/peFraNgrolusfLgglkjk+kRx6mwKPL
bmrqPtl/fuDVS3sK0h+yM8UeE3ikRPdODqYgRmSerhZJxl9P1SpgUdCV0sd5
mUzGP0iUKxmn4MGqjuWm7wkciI8RqZynwG375qyZVHL+dffGGjfVw6+eSlmT
TcZLucT3e9XDMFTMIrKcgL7GicfD9+ux6cXSGXoVOd4+c9+J2HqYCst4/6kl
5++213q6uh6ieicOKVHJ6xfJrhISb0BhdZRqTQeBx/S1CyKqDdib/mj0Xjc5
3tByjigasCe7k7Gzj1zvit+10mcaYOZEHPMeIuMdWv01cxsQGenbB4JAMHsH
hhsa4P0h5K/iSQK3vN/8iRloQFPwAL/qdwIe4e43BFY0QupVciX9JwEXeeb2
og2NWFLuFy78m4B96vaZS7qNYH0POqXzh4BxzZIrPU6NOKQb+eQdHw8HzM9p
P7vRiFk5mSeJi3jY1d/EO/SkEc17N8hFLuZB/XeUe/aXRqwpzZ899RcPm0IW
VF3pjZg2WzDcwc+D7FrncfmRRmyt0PhXZCkPKzQ0zzwQbYJ1qMNchAAPSwsj
FPcqN6HZWrzZSJCHeYPfgzM7mxC/RtX8D2nuqWrH0+ea8PDKLct9y3gYJlTl
JP2aUKXk09tOusfnaXfTsyZ0LjaVPCvMQ9NzOxu90iasMfn43nU5D9UbyiV4
LU1wsvvB30+6OEOpNWmiCT0DCVLGIjzk7HwYYbuIisNXDo9/Jp1G+Wa2SpwK
Tbqj18oVPCRbWonWqFFx59uu0tOkY78W0Xz2UvFYVLYunfRzzw2Pta2oEMyW
CJsi/Wg+xGjUnQqHNBVpjZU8BIdyhWMDqdBX0Tp7ivQtCXOKWRQVpz+Nez0k
7ZWUHyKUTrarzxhkkPbQljtYUkmF/2RrD4W0S8kd/qsdVAhnE9u7SdsfGa9Q
4VFBiQ2wHCH9ga20h7eYBvO9OXpjpJUybeTrRWgYj386MEA6wfvhQpIEDSnq
f4ybScvtLu3x30DDYE25XxHpmKVTRbbqNNTnP7wSS1q8UfHVNl0atn4ZV7tG
OjzcymfVfhpejx98e5D0SptQW7YxDe6U70MrSYfKF+vVWNNgumP9EJVcv8AI
T/KNEw1zNwcS75IOTN0w63OBhgmJzRv/Ib1w2aLN8gYNvgTlZA95v2/q3cvV
DiLHU7hl50t6hq/wucgTGrSWd4iuIX25hnt1NJqGjj2WgW/I/SMeKhyvSKKh
3MfkozLpEam7q72/0KB83Vdemtz/0/3538yqaTi/tuHMPTI/elPYdHU6jdzH
GgeuEA+tOqZPvg7TUDEbZxVH5pfZ7zsXSiZpiAx+ZT5B5iO1LNc4eo4GsW93
Z9RJ1xjLiBwVpWMwSFjpFZnPa9T7xS5J01Ec57KBRea7o0iS/LNNdCxS8qcK
kP5Vr6bTpkfH3LS12nGyPtQO7bB1PE1Hh/gbUw2yvq4r8zkHuJPtx3rfqZL1
VyVQ6ZF4jY4uGTstyVmyHqsNA0ZD6RD+xMquIev3yT7bdxez6PDjHK33nCDQ
tV4uM6yYDm2TU10/RglsXjxYmFVLh6i5+oDbMIHy0vO0n110lLX6vFftJzC9
88aMPz8DtLg726daCNhsj9J/asHAE4Xv0/GFBJLFT5hkOjKwWhZzWvkEpn7I
W7ecZ4Cb9Mf6M/m8e5D91k3Sj0HmzRFOYBqBEu288PgUBn4l31U4F0dg45bW
/k8/GfhnptRX8xaBi8tjJpiLmZAKk19b6k2gaMJ+eno5E2m97zRxlYDF+2FB
PQUmtmhF5wq7EQhR+qFRfoiJdbsSTLqsCHAU1t5iRDNxyWPVdiMNAttvxnuW
JTIhwUl1GNtMIKB5i3NGGhNtOfMfr2wkIHb3wJFH5UzkCCp7WkkS2MW+JnV4
nAkvyZOvTBeTz8ucjpwy3WZcC4x+z0fnomPlmfcZ+5oRhC+GwRQuNp6behVn
RLYX2rTNVnCRt255kO/JZgi5suze53DR57/TTPdeM1mvt+LVY7jQMnxNZLQ1
IzxD71O6Ixc+iWqDcQPNENfarS9kTb6P/+SxHrGb4SA+ZWByjAubDHqRG18L
Nls1bnu9h4uAtUseKCu3ICh3W6mpAhfMXmfl19daIPT4m/ZAFwdXr6iefCzG
Quox5eHWfRyILSMKLRRY2Lj/nlnSdg7y4j5LyKqx8CjxqZrlFg7mKLq0j3tY
aPl17OwZMQ4CFAxAcWPBKbCkQ2eEjUdNTjL8FSz43Pn02SqQDU0nZe+GRhZG
14Wtt/Bigz470RzexoLA2a19OufYWKN4+cF6Lgspq/JdI4zZiL55+zckW8H0
8c/tEmcjWTm2/caFVsisTF5mmjgBg+KTW/feaEWC4CDzUMQExswUnwoFtYLB
0D4sFzwBNb+PBi+iWyHkeWbfqTMT+NxSkJtd1QquNufCHuUJFAe0RvDWteFQ
b462Kvm919r1H1OX2jacUamQrro5hsOhzm1XGG3w+5lVsP/cGAp1C+wDu9og
ytxLjbUYw+vnp11f89rw9p3KiX7NMZw9mnOnQ6Idlw60LooaHMWvCttc43Pt
mNFN1ojaMwq3Sxk7T1xuh/2Zi4XxaqPokeevdPVtx3wYI8FffBTlvmm0kKft
CG31ulzKHkHoP4vGy/PbEeHtn7Q7YgTSH5Kl/1nWAcbGEC+BnmE8sv79Rn9N
BxRlUjKOVw+DT/DoZnPZDjxbGJq/mjaMr06zWz21O/D1/I8q1VvDSJU9YvLB
pgMYZoY4rRvGrrDJ23IfyP4lb7qpR4bg6L1jROBIJ67GT8/X3huEilNtC9ei
E78Gt603PzeIKWPzypaTnbCt/r7qtcEggje6xSdc64QHr/K499JBfKTG2CKh
E8PvCypV/AYwq/ib6vWrE7u5in/bOPUjjJGfN/S2C77eTbL9s92wK9JPacjs
wpbHOZaBb7uh+JYekVnchahuT53XFt3I8x27dLu5CyWXxj4f/tSFHmXJLTJ8
3TARiX113rETKn7X480tu6F7hqr/d3IbKlT/uV/B34Nk/sRrw80M2GuYJ0yu
7IGidvec6w0Gfmp7FspJ9cDKpqIyXI4BNb0P3JvqPQgQaZKjnqXjmYGcmY5l
D25ErJbW4VLh4iwgnfS2B2kbN61/IEiBYFxrarBhL4p3r2gzz/wC37MfVz6c
7kVf3P//N/8LJStogg==
"]], LineBox[CompressedData["
1:eJwV1Xk0VlsbAHCUBqKS5tFYMmVuuDxFRYYuSkpR3NssuSU0kIRIhtKgFBkK
KVQq8xMlokJkLN75nHc8LyEkvvP9cdZZv7Wetfc5ez+Dms9J14NyMjIyo/Tz
/3dVg07wOnkGTNwbfadQdxYro9KFaa4MMD1RqaPgU4K7Jl+R3NvHgOt+Gyal
Hy/HyAmXgUR/Bnz7db7s+oYq5AwSExeSGdC4IOfLLtNazGDNme9GMqDoqZyj
hncz+qVHJbuKGZB9LWCqtLQZ1x8YWejcz4AUWS2Lg6pf8euPniUOYww4JFyl
tfnDV5TtzFXfNIsJ6jarjhZpteKBRjDQX8uEXMcLaue/tuHS8uNb5KOZMHjI
ykG/pxtVF46O+sUxwc8tMKPZ6DvOCIwu7LjBBH1ewuOfEd9xzPDR4qcPmKAc
nBFcoPMDuzJ7+lxfMuFgafjZCd8evB3rkvqwhwkvQ5VOnjrBwHiyd4cChwku
12V7ViYxMHKL3/QAPhNkkTydUszAgImrAbYDTLC2YPlUyDHR9fR7e8l0FuyA
x6pUEhOV91r82mDGghi5kIJVT1g4pbjm6aP1LNg4luXe2MDCP6o7fWZuZIGo
LTzOXMxC0Rf/zyx7Fnxe5x9ta8jGeusnmTEHWKA7Cf85V8jGK6uXOrfHsuC9
wKvBM5uDMqNyuadYLGjRfHtG+ygPD7A7f14kWHAih7065xIP334qtIoTseDI
u3tvR+/yMCzNqzV7iAWxLo0Zc+p5OLG5dOK7Aht6iw53L15F4HjCf7tsTdgQ
nCKQf9dNoNdZu/Sda9nwr8Wx3af7CKz0WS7ytmRDs1ofa3gKiaFmny9dsGVD
LCP9ZYQRiX+6Vj17vpcNfUFD1Y8jSBzTYkxaEsGGNiVj4m8NPu6b+Wa7Tgwb
7PMd758252P5cNxd83g2FO6Zjf7b+HihYYOhSzIbegQVLsN+fPztf8cj6ikb
RN/KXtsU83G0bPtzaSsbGF47y+Q2C/CXS4VXjRYHBPNnO9VtEmJ4Z8EPK10O
tG9wc/nkIkRl74x9xWs4oCHMb8jzFqK2/xWPvA0ceCD/1nA8TIg74112XXfh
gFp0cN+vCiEW1nOdPEM4MBL9xDvISIR/uXZ8agvnQPBiWy0XEGFtZ72DczQH
Dq8Zd1FwEmEPWbDNJokDM4uIxsVHRDhj6rktOrkcWGKkklZ1X4RHbZQtB1s5
IHuR/9lORowD9TLlfl0cULJ/4WYyQ4xhrj/Xk70cYC0PeiqzQIzJ3h1ruwUc
sFguittsKMYPFzNMq2S4cDs9LyBwnxjVy8314vS4oNN++nPeczF2m+5frBXB
hQntYINYOwkeGjGbGRnDhSNar4vHnSUorZgxiRvPBfvnv9bt3SPBybalgqy7
XIhMc3rUeFSCBnvmlmoWcKF/u1pWbowEw0Iadmt2cSHip4aeZY0EFawzHCN6
uUC5ML9s/yTBW1PObuRwuJAjp+Xo0CLBJwnaq7IoLsz197eWZ0qwJf3SLw15
HrBtVGTCfktQ+4PFbY01PPirevHLx3oUFl5VvnrZjAd7dhb9+s+YwvV/c0PY
63mg3hT6UGcthX933DiYuYUHclNenPGyoTBYIDbV2MsDlVc+oYzdFMoVvF91
+QAP3J8nmc/2ojDudMoS9kEetBbIjBj8Q2HGmN3kTH8euKxu5BudoLBBOatF
PYoH8bdOXnEPo3BXy7na8Fge3Ov4nNYfQSHjjksZK5EHlRpb3M7HUDiwYiIj
I4UHF674dbvdoHCZiccp9ec8qEg9tsIok0J/91mz1b/z4O4psWx8FYU+OYb3
tJg86LD8LPzynkK3ke0aOjwe6C56+Eimjv6/lDizNVIetHeZvzD/QqF8r4KH
1WQCeutrbCSdFA4brmZvmk6A6sJN715/p1AQts13izIBW7Nq9vv3UtikHh3q
uICOV/qg8oZD4b1D8pkeegQwZw9tS5JQeO2Npp6XEQHpnEP3uVIKL07b/Mrb
nIC+uGxHnZ8U/vskvPbIRgL8fY+wI35R6P473dl3CwGQ39l+f4RCe8eqzpP2
BCgY/Nny+DeFhpIJYeBOAgo/m+bGTVCoDsvPnNtDAHvNgW+vZKSommg1HuJF
gM7zwLQHslIcNQqZFXmEgGKYkeI+SYrvz4yaJl0gIGHrpPNnpkjx9YeFlbcv
EXBs3hIV3alSzJ2/zvZeFAFhQwuudNKOLwnak55IwOaOHXPUpkvxksIdVtYt
Ak5uzzQopR2w9/XxnHsEvG0dMXRUkOKePwMhBVkEPFPmCj0Upei4XXXqy1wC
gnK+5bbTtkozSXydT0CRUeROpxlSNJK6Lix9ScCEwVFxGW3NTacyKooJKEhn
nNFQkuK8G9d1qyoIuDHTlLpMezq7sOh9NQGGV295/KA9ZtJkWVdLwOVXK0oM
laUoiaA+NHwiwO5Ll+J52sxvys6NzfR+BS92IO1WbYPOr23093aEXR+j/SHI
yaetm4Cf/lM/GM+UYkmdr7CTQUCGY3+fN+2nC68F/OASUCNtm3uVduqxvD8M
AQGWt02N82hfL6uP4lAEZOsF2NbQjpghmEkOEJC3j3TroB3oOf2ucISAppjP
nhzaR/NXqVPjBDS2bNvPp71vwjavfxIJJ+ef8CBob3c+bDo0jYQfkjV/99De
lB5VMaJEQuTzYMsvtE37H239o0LCf6dna72hrW1T0yizgAT9yS/k79JeeJOz
e/JSErTFoz2naa+9vHxegDoJeq9fZNnQ3nXKo4W9koStunlairQDvG8l7tAn
Iapytnc9fR43nJuc3hmT4DF10O0S7UJQVDRZS8eXb560hnajwda6DEsS2vKa
D7fR5y9ZeilSxYaE8iKn8ADaM5TKrcPtSFhZ4eCiQHv12NBEnxMJDrnQcoe+
XzuhUYX3DhKWuIROWUo78mO2xSYvEiZeJJ1VpvMjq5g1UPgPCb+Cgl+do/Op
OnvpixVHSVg78O5eD51v45FJejIBJPhu27E7bpoUl5z5wj95loTv9U90O+h8
3fDv9OzeUBIkJompi2gHW19UwxgSzgQ1u0fJS/G2UWmPQQIJeXGbkwsmS7Fo
xWBK6k0SWN2nfZvo+ugbPzYvNI2E4dL26mG6fmZJHrWIs0hIzNG0kqFt8IOR
6PmEhOaX5aHjdP0dK9ulaPmK3n/Jl+hauj45QdYyY/UkRKfjl2v9dD88HFJx
vIm+PwtFmzl0/a/YVXyu+xsJSTebLkaLKfQ0NRgsZZCgNmedHpAUtkkXCs4O
kcBgj5t8p/vNQO/ObP5vErbd/ae5ne5HcxoT/t0jywe7Ajd2VRuFzs/ke9fO
4EOzC9fMu4nCj0f7Wn6p8UH95yvLhmoKyd161w+v5MOs6Qd11iGFU+wOb2/X
40NMQqrmrTIKrbV/1L22oNczHp09v4jCclZdxRknPphEPzHelEVh/t6H2T+D
+eD++Q214hKFpu0ao1NC+SA6mHql5AKFZa7Zjosu88HhZn7qpmAK67bl922M
48MIY0hpxUkK2RblG+LT+XAnvt1SdR+FC1Q7GlfV82F/E/NSAz1fUhP2qv/V
yIexjMqQnfoUain2BvzdyoeuNLGwYSWFxnK8hYE9fOgcONcSuYRCJ+nPf971
80H5V3K+hjyF4Z9mDnsuFoDGsfCiwa8SnGaXZP/fCgGkUPxj++h5mPBu3oMI
LQEojltsLaTn5f3SpdZ5hgLw7XutvLxYgm9ydK8N2wig16/Mad59CYoibFck
+QogIeNGjdsBCbpbXrSrqxCAn5wJ4dEpxu+DvJnV1QLoW7BtzLtJjD7529vL
agVQ/PHK/R21YvRdvuxQQbMA7v65ITtUJMZw2YrLt7kC6JKPZJokiDG/ZrTy
XyUhDL11nxwEYjQN9YnyUhGCSeaJC/PNxFhiXu+0e74QnDbPOvRwtRjfZ9/9
7qAmhLPTG34fmyvGzpi1o8ZmQlB5bLqsly/CydsDzWQ96fXMhkPU4kV4dUrP
2Ki3EJ5nSo0swkU4E7e8HzgkBKXEQK5xoAgXrZm7g/QXgsddSXq3pwgNVYr8
GyOEoPz1T6lYV4QebX15D54KwT7QOEJcLcTnXifU148JoWuQOW9WtwB9XkmX
PpQVwdN3utXr6gWoOiNg4ZSpItgRYFtsWSLAwJJzs77OFoGV7TK/ltsCXK8a
PX50pQi0U31tDJwFWP0xo+uuqwiaIpMn+ZTx8fQK7bYJdxGUzRA+VM7ho2ZQ
bvNBTxHwvzv+TLzJxyjNwjqjIyJYGap6ae4JPjpcrHj9MUQEgmsOz+Yu4WOr
aceNkRwRfHuo7/H0PxIjY/fG788XwRq+9byEvSSas3pial6KIPeIIMx6C4nJ
Cdyw65V0fHOe6qIFJHoK+v10WkVgljKmeLmMQF6aksOeCRGk9T1x7x/m4bCC
zaQSNzEc8BnMHnTgoopE+Wa1hxjMexMTLIy4qNvcpflpvxgUAj30bedx0evO
qa29R8VQ3uQW+6WXg+80MmLkQ8VA9A5Rgf4cjP9LdpbrYzEsGFmWNHKFjVp+
uEQ4JIbYb396nOOZaOUS+2zgN+1Xs39+92XiblN3q3EZCWzm1EascWDi1VHJ
/tmKEtAfsi3Rn8pEadSyTIvlEhBIOuRCLzCwPC1EJ8JWArcn6+e2Fvega/MG
86XJEsjYLXy9jt2JChsUq8ofSEBR027wZXQnVmV1OezLlICH/c6CR/qduCb4
rHdKvgRsNfXj+890oPLyN9cW1khAt8Nx/zaZdvzoa8ye2y+BLiP1qMaxFtw4
TSdR2ZGCil3Xj823asDh/4YX5btQ8Czd88mT4/VY0F37yMmdghfzXm2JS/6I
ywoOlV3zoYCwz9yzQ1qLY25ZPIWzFHh4XUk4nvwe32Qut5z6mIKW44Gl+all
6KdE1T7Oo+DqZvfz4WQJagdVum59ToG1tq5jqlEx3rT3PBJZTkHV2qtWP6qK
8FTfvaRJLRQM+gx4JLzJw9V7jy3L7KCgZOPaup3WOch8vy7XuocC3SizE8c/
ZaFzckflJT4FNz9JVXorUnCaXM42NYoCGRXfe0sbbyIeD2p9O0BBR5Xf4ViM
xcBvW/cfGKXAziesQ+vteTSAeYKJCQqSXhr5V01LqfwfOtSXZw==
"]]},
Annotation[#,
"Charting`Private`Tag$18297#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"t/s\"", TraditionalForm],
FormBox["\"out/V\"", TraditionalForm]},
AxesOrigin->{-1., 0.},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->{240.8046875, Automatic},
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],