-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch5-DAC信号和镜像增益差.nb
820 lines (801 loc) · 35.3 KB
/
ch5-DAC信号和镜像增益差.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 35963, 812]
NotebookOptionsPosition[ 34769, 784]
NotebookOutlinePosition[ 35131, 800]
CellTagsIndexPosition[ 35088, 797]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"gzoh", "[", "\[CapitalOmega]_", "]"}], ":=",
RowBox[{"Abs", "[",
RowBox[{"Sinc", "[",
RowBox[{"\[CapitalOmega]", "/", "2"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gdif", "[",
RowBox[{"f_", ",", "fs_"}], "]"}], ":=",
RowBox[{
RowBox[{"gzoh", "[",
RowBox[{"2", "\[Pi]",
FractionBox["f", "fs"]}], "]"}], "/",
RowBox[{"gzoh", "[",
RowBox[{"2", "\[Pi]",
FractionBox[
RowBox[{"fs", "-", "f"}], "fs"]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"gdif", "[",
RowBox[{"f", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.005", ",", "0.01", ",", "0.02", ",",
"0.05", ",", "0.1", ",", "0.2", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.001", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "60"}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.003", ",", "0.004", ",", "0.005", ",",
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",",
"0.1", ",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",",
" ", "Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"\:589e\:76ca\:5dee\",FontFamily->\"Times\",\
FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"(\",FontFamily->\"Times\",FontWeight->\
\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\
\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.763727597458564*^9, 3.7637276210208607`*^9}, {
3.763727822531169*^9, 3.763727841807653*^9}, {3.763727907188816*^9,
3.7637279314198713`*^9}, {3.7637280424636307`*^9, 3.7637281406741056`*^9}, {
3.763728245663394*^9, 3.763728287393271*^9}, {3.7637283257796783`*^9,
3.763728465365655*^9}, {3.76372851336277*^9, 3.763728858810564*^9}, {
3.763729128449169*^9, 3.7637291440569344`*^9}, {3.7637291849022913`*^9,
3.763729207726388*^9}, {3.763729262017067*^9, 3.7637292633180923`*^9}, {
3.763729878256629*^9, 3.763729897592319*^9}, {3.763729933908103*^9,
3.763729988568986*^9}, {3.763730040394391*^9, 3.763730151586357*^9}, {
3.7637305812869043`*^9,
3.763730669003367*^9}},ExpressionUUID->"04a194f7-f4be-4c4f-87ed-\
62cdbd141b04"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAA8RgNkYqhG8ASVMUz4/5NQE41O+uW
nxvADuVMLMT8TUCqUWlFo50bwIpukCSl+k1AYorF+buZG8CS50oUZ/ZNQNL7
fWLtkRvAIsSJ8OrtTUCz3u4zUIIbwEayEZzy3E1AdaTQ1hVjG8DQP1u+AbtN
QPkvlByhJBvAzuUjKB93TUBf89jiNZ0awA62Zi3q40xAdS+5/8MeGsDOgJa3
cFpMQCCglRTNohnAXQAgcqPTS0ApvS9kVBwZwK//Zm1hQUtA4VJlCtWeGMCW
Q9DG2bhKQPeUWOvTFhjALZJmj9kkSkCiC0jETZEXwLpCWGqAk0lA/frS88AU
F8D9Kzf03wtJQLaWG16yjRbAfnjcgL94SEAfq/8enQ8WwL4Ci7VV70dAHPTf
1wKUFcAa3QzxjmhHQHfpfcvmDRXA6xFhpT3WRkCCV7cVxJAUwHTWY9KfTUZA
63Gumh8JFMAIkfvkbLlFQOnAoRf2gxPAtDIS0M4nRUCXiDDrxQcTwOa6+IHf
n0RAo/x8+ROBEsAmXHl4RgxEQF7pZF5bAxLA1uvihlaCQ0B4ggr+IHsRwLjU
i1io7EJAJlCslWH1EMCaG0o1dFlCQISW6YObeBDAQ/Prrt/PQUB/EslZp+IP
wErt35VkOkFAVun1WArmDsBgtS2bfa5AQFYpG0hj7g3AYviTs/kkQEASwrus
uOEMwNb27t+pHj9ALUyTvgDnC8D0pqecYgY+QAUv5kVF1wrAYcFJjmLVPEAG
ezG9f8wJwGyAU0GGqDtAZriz4azTCMDRpxbncI46QIJOsXvWxQfACuyC77Ja
OUD+1eXC8skGwAKwgFtyOThAo8YS+gTTBcB0fpYewhs3QAQQu6YTxwTASWoQ
kQHjNUDFSpoAFc0DwEyHcSE5vDRAQt70zxK+AsCFbGId4ngzQB9jhkwDwQHA
C+ynVdRGMkAlURC56cgAwPfnm5dCFjFAzy8rNpl3/7//M4ty8YsvQBOgo1RE
gf2/KwaovyELLUDPwRJe6GD7v0VGUdG3QypA3bVyR3hK+b+iwFA0p3QnQKuM
QIvtV/e/3Z+W956/JEDxFAW6Wzv1v2tSeTR9siFA9n83Q69C879x6NVUuG0d
QE69WqzuU/G/rQCQJt1DF0A6WOkATnbuvzIqNcu4IBBAV/v4XYmM6r+mDRBY
ltQBQChdjUUQe+q/kubEAzyRAUD4viEtl2nqv2IZsxnFTQFAmIJK/KRG6r+H
uuTjgMYAQNgJnJrAAOq/KgQo+zRt/z9aGD/X93Tpv5hF0idiIvs/XjWFUGZd
6L9XRm3dZ13yPy6XGTjtS+i/TYOmqOXO8T/++K0fdDrov4ChwO4eQPE/n7zW
7oEX6L965/xLwiHwP+BDKI2d0ee/LHrcdoHD6z9iUsvJ1EXnv2qDTdh5qOI/
MrRfsVs057+tmJWWf4LhPwIW9JjiIue/DwCNde5b4D+j2Rxo8P/mv9TfvbUH
Gtw/5GBuBgy65r/FCn9g5c/SP7TCAu6SqOa/N7BY30160D+EJJfVGZfmvwLD
kIfyRsw/Jei/pCd05r/Jp1F0IeTCP/ZJVIyuYua/MecD++JdvD/Gq+hzNVHm
vw6kgjhu7rI/lg19W7w/5r+4kAmtuPOiP2ZvEUNDLua/76SGX2x7wj5rHmkb
"]]},
Annotation[#, "Charting`Private`Tag$52056#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"f/fs\"", FontFamily -> "Times", FontSlant -> Italic, FontSize -> 12,
StripOnInput -> False], TraditionalForm],
FormBox[
StyleBox[
"\"\\!\\(\\*StyleBox[\\\"\:589e\:76ca\:5dee\\\",FontFamily->\\\"Times\\\"\
,FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"(\\\",FontFamily->\\\"\
Times\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"dB\\\",FontFamily-\
>\\\"Times\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\")\\\",\
FontFamily->\\\"Times\\\",FontWeight->\\\"Bold\\\"]\\)\"", FontFamily ->
"Times", FontSize -> 12, StripOnInput -> False], TraditionalForm]},
AxesOrigin->{-6.907755278982137, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{{-6.907755278982137, -6.214608098422191, -5.809142990314028, \
-5.521460917862246, -5.298317366548036, -4.605170185988091, \
-3.912023005428146, -3.506557897319982, -3.2188758248682006`, \
-2.995732273553991, -2.3025850929940455`, -1.6094379124341003`, \
-1.2039728043259361`, -0.916290731874155, -0.6931471805599453}, Automatic},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-6.907755278982137, -0.6931271807599427}, {0, 60}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{{-6.907755278982137,
FormBox["0.001`", TraditionalForm]}, {-6.214608098422191,
FormBox["0.002`", TraditionalForm]}, {-5.298317366548036,
FormBox["0.005`", TraditionalForm]}, {-4.605170185988091,
FormBox["0.01`", TraditionalForm]}, {-3.912023005428146,
FormBox["0.02`", TraditionalForm]}, {-2.995732273553991,
FormBox["0.05`", TraditionalForm]}, {-2.3025850929940455`,
FormBox["0.1`", TraditionalForm]}, {-1.6094379124341003`,
FormBox["0.2`", TraditionalForm]}, {-0.6931471805599453,
FormBox["0.5`", TraditionalForm]}}, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.763729975968425*^9, 3.7637299891693687`*^9}, {
3.763730071568297*^9, 3.763730151988433*^9}, {3.7637305861334248`*^9,
3.763730669313957*^9},
3.763731709461233*^9},ExpressionUUID->"9ee2cdd3-76e3-41b1-8719-\
7a99d3d86b0c"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.763729921694973*^9,
3.763729921713276*^9}},ExpressionUUID->"f4d2d21c-e5b3-4a3c-8722-\
da57b1d34e44"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"gdifdb", "[", "fn_", "]"}], ":=",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"gdif", "[",
RowBox[{"fn", ",", "1"}], "]"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gd2", "[",
RowBox[{"fn_", ",", "o_"}], "]"}], ":=",
RowBox[{
RowBox[{"gdif", "[",
RowBox[{"fn", ",", "1"}], "]"}], "*",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"1", "-", "fn"}], "fn"], ")"}], "o"]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gd2db", "[",
RowBox[{"fn_", ",", "o_"}], "]"}], ":=",
RowBox[{
RowBox[{"gdifdb", "[", "fn", "]"}], "+",
RowBox[{"(",
RowBox[{
RowBox[{"Log10", "[",
FractionBox[
RowBox[{"1", "-", "fn"}], "fn"], "]"}], "*", "20", "*", "o"}],
")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"gd2", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{
"0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "7", ",",
"9"}], "}"}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.005", ",", "0.01", ",", "0.02", ",",
"0.05", ",", "0.1", ",", "0.2", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.001", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "140"}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.003", ",", "0.004", ",", "0.005", ",",
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",",
"0.1", ",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",",
" ", "Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:4fe1\:955c\:6bd4\!\(\*StyleBox[\"(\",FontFamily->\"Times\",\
FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\
\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"gd2db", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{
"0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "7", ",",
"9"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.005", ",", "0.01", ",", "0.02", ",",
"0.05", ",", "0.1", ",", "0.2", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.001", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "140"}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.001", ",", "0.002", ",", "0.003", ",", "0.004", ",", "0.005", ",",
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",",
"0.1", ",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",",
" ", "Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:4fe1\:955c\:6bd4\!\(\*StyleBox[\"(\",FontFamily->\"Times\",\
FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\
\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.763731590360441*^9, 3.763731771722774*^9}, {
3.763731814043254*^9, 3.7637318207471733`*^9}, {3.76373186328494*^9,
3.763731888508762*^9}, {3.763731927307887*^9, 3.763731990012157*^9}, {
3.7637321438923063`*^9,
3.763732284383668*^9}},ExpressionUUID->"9e851b42-f8d4-43bc-a209-\
4828c9644588"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwBwQI+/SFib1JlAgAAACsAAAACAAAA8RgNkYqhG8ASVMUz4/5NQE41O+uW
nxvADuVMLMT8TUCqUWlFo50bwIpukCSl+k1AYorF+buZG8CS50oUZ/ZNQNL7
fWLtkRvAIsSJ8OrtTUCz3u4zUIIbwEayEZzy3E1AdaTQ1hVjG8DQP1u+AbtN
QPkvlByhJBvAzuUjKB93TUBf89jiNZ0awA62Zi3q40xAdS+5/8MeGsDOgJa3
cFpMQCCglRTNohnAXQAgcqPTS0ApvS9kVBwZwK//Zm1hQUtA4VJlCtWeGMCW
Q9DG2bhKQPeUWOvTFhjALZJmj9kkSkCiC0jETZEXwLpCWGqAk0lA/frS88AU
F8D9Kzf03wtJQLaWG16yjRbAfnjcgL94SEAfq/8enQ8WwL4Ci7VV70dAHPTf
1wKUFcAa3QzxjmhHQHfpfcvmDRXA6xFhpT3WRkCCV7cVxJAUwHTWY9KfTUZA
63Gumh8JFMAIkfvkbLlFQOnAoRf2gxPAtDIS0M4nRUCXiDDrxQcTwOa6+IHf
n0RAo/x8+ROBEsAmXHl4RgxEQF7pZF5bAxLA1uvihlaCQ0B4ggr+IHsRwLjU
i1io7EJAJlCslWH1EMCaG0o1dFlCQISW6YObeBDAQ/Prrt/PQUB/EslZp+IP
wErt35VkOkFAVun1WArmDsBgtS2bfa5AQFYpG0hj7g3AYviTs/kkQEASwrus
uOEMwNb27t+pHj9ALUyTvgDnC8D0pqecYgY+QAUv5kVF1wrAYcFJjmLVPEAG
ezG9f8wJwGyAU0GGqDtAZriz4azTCMDRpxbncI46QIJOsXvWxQfACuyC77Ja
OUD+1eXC8skGwAKwgFtyOThAo8YS+gTTBcB0fpYewhs3QAQQu6YTxwTASWoQ
kQHjNUDFSpoAFc0DwEyHcSE5vDRAKpFRdFIvA8AAAAAAAAA0QEpiSaQ=
"]],
LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAA8RgNkYqhG8AeVMUz4/5dQE41O+uW
nxvAK+VMLMT8XUCqUWlFo50bwNNukCSl+l1AYorF+buZG8Ca50oUZ/ZdQNL7
fWLtkRvAGsSJ8OrtXUCz3u4zUIIbwIKyEZzy3F1AdaTQ1hVjG8DpP1u+Abtd
QPkvlByhJBvAzOUjKB93XUBf89jiNZ0awPC1Zi3q41xAdS+5/8MeGsDGgJa3
cFpcQCCglRTNohnAdQAgcqPTW0ApvS9kVBwZwK//Zm1hQVtA4VJlCtWeGMCk
Q9DG2bhaQPeUWOvTFhjALJJmj9kkWkCiC0jETZEXwMRCWGqAk1lA/frS88AU
F8AJLDf03wtZQLaWG16yjRbAk3jcgL94WEAfq/8enQ8WwMkCi7VV71dAHPTf
1wKUFcAr3QzxjmhXQHfpfcvmDRXA6hFhpT3WVkCCV7cVxJAUwHbWY9KfTVZA
63Gumh8JFMAOkfvkbLlVQOnAoRf2gxPAvDIS0M4nVUCXiDDrxQcTwOK6+IHf
n1RAo/x8+ROBEsAkXHl4RgxUQF7pZF5bAxLA2+vihlaCU0B4ggr+IHsRwLnU
i1io7FJAJlCslWH1EMCdG0o1dFlSQISW6YObeBDARvPrrt/PUUB/EslZp+IP
wEzt35VkOlFAVun1WArmDsBftS2bfa5QQFYpG0hj7g3AZfiTs/kkUEASwrus
uOEMwNj27t+pHk9ALUyTvgDnC8D4pqecYgZOQAUv5kVF1wrAYsFJjmLVTEAG
ezG9f8wJwGyAU0GGqEtAZriz4azTCMDTpxbncI5KQIJOsXvWxQfAC+yC77Ja
SUD+1eXC8skGwAGwgFtyOUhAo8YS+gTTBcB4fpYewhtHQAQQu6YTxwTASmoQ
kQHjRUDFSpoAFc0DwE+HcSE5vERAQt70zxK+AsCGbGId4nhDQB9jhkwDwQHA
C+ynVdRGQkAlURC56cgAwPbnm5dCFkFAzy8rNpl3/78CNIty8Ys/QBOgo1RE
gf2/LgaovyELPUDPwRJe6GD7v0VGUdG3QzpA3bVyR3hK+b+hwFA0p3Q3QKuM
QIvtV/e/3Z+W956/NEAtr1LaUdP2vwAAAAAAADRA04uNYA==
"]],
LineBox[CompressedData["
1:eJwBQQK+/SFib1JlAgAAACMAAAACAAAAzkN83mOCFcAAAAAAAIBhQHfpfcvm
DRXAcM0IPK4gYUCCV7cVxJAUwNngyt03umBA63Gumh8JFMDNrLyrEUtgQOnA
oRf2gxPAHEwbOLa7X0CXiDDrxQcTwFIY9ULP715Ao/x8+ROBEsA0Cra0aRJe
QF7pZF5bAxLAy2FUyoFDXUB4ggr+IHsRwBW/0YT8YlxAJlCslWH1EMBsKe9P
LoZbQISW6YObeBDA7Oxhhs+3WkB/EslZp+IPwPPjz+CW11lAVun1WArmDsAQ
kMRovAVZQFYpG0hj7g3AmPRdjXY3WEASwrusuOEMwCI582f/VldALUyTvgDn
C8A8vX31yYRWQAUv5kVF1wrAC1G36gmgVUAGezG9f8wJwFGg/rBkvlRAZriz
4azTCMDe/VCt1OpTQIJOsXvWxQfACTGiMwYEU0D+1eXC8skGwAGEoMQVK1JA
o8YS+gTTBcDb3vCW0VRRQAQQu6YTxwTAuE/MLEFqUEDFSpoAFc0DwPhKKrJV
Gk9AQt70zxK+AsDJohMsUzVNQB9jhkwDwQHAEeJ7gD5qS0AlURC56cgAwPLb
aeNjoUlAzy8rNpl3/78CZ+gV9ahHQBOgo1REgf2/owS+T1nIRUDPwRJe6GD7
v7T0/NzJskNA3bVyR3hK+b95kDxnfZdBQKuMQIvtV/e/zO9hc24fP0DxFAW6
Wzv1v6H7tc67izpA9n83Q69C879WbqA/ShI2QL0Qkij7ZPK/AAAAAAAANEAj
OA2k
"]], LineBox[CompressedData["
1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAjKe6TFIwEMAAAAAAAIBhQH8SyVmn
4g/ATe3flWQ6YUBW6fVYCuYOwF+1LZt9rmBAVikbSGPuDcBm+JOz+SRgQBLC
u6y44QzA2fbu36keX0AtTJO+AOcLwPump5xiBl5ABS/mRUXXCsBjwUmOYtVc
QAZ7Mb1/zAnAbIBTQYaoW0BmuLPhrNMIwNOnFudwjlpAgk6xe9bFB8AM7ILv
slpZQP7V5cLyyQbAAbCAW3I5WECjxhL6BNMFwHl+lh7CG1dABBC7phPHBMBK
ahCRAeNVQMVKmgAVzQPAUIdxITm8VEBC3vTPEr4CwIZsYh3ieFNAH2OGTAPB
AcAL7KdV1EZSQCVRELnpyADA9uebl0IWUUDPLys2mXf/vwM0i3Lxi09AE6Cj
VESB/b8vBqi/IQtNQM/BEl7oYPu/RUZR0bdDSkDdtXJHeEr5v6HAUDSndEdA
q4xAi+1X97/dn5b3nr9EQPEUBbpbO/W/bFJ5NH2yQUD2fzdDr0Lzv3Lo1VS4
bT1ATr1arO5T8b+uAJAm3UM3QN499ghfXvC/AAAAAAAANED+hsVO
"]],
LineBox[CompressedData["
1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAsEF+KhAaCsAAAAAAAIBhQAZ7Mb1/
zAnARDDU6FNJYUBmuLPhrNMIwOQobpAGmWBAgk6xe9bFB8APp2OrX7FfQP7V
5cLyyQbAAdxg8s5HXkCjxhL6BNMFwBcePKay4lxABBC7phPHBMDchFT1wVtb
QMVKmgAVzQPAJOnNaUfrWUBC3vTPEr4CwKgHu6QaV1hAH2OGTAPBAcAP5xFr
idhWQCVRELnpyADA9OGCPdNbVUDPLys2mXf/v4IAl+d2t1NAE6CjVESB/b/d
A8kX9SZSQM/BEl7oYPu/68vS4lJqUEDdtXJHeEr5v8nwZAHRUU1Aq4xAi+1X
97/WR3y1hu9JQPEUBbpbO/W/B6eXgRwfRkD2fzdDr0Lzv0ixBTWTZEJATr1a
rO5T8b/bADRw1BQ9QDpY6QBOdu6/vnQC/uYoNEBy5fA5jWTuvwAAAAAAADRA
v7SgTw==
"]],
LineBox[{{-2.752335566422351, 140.}, {-2.728036836336132,
138.65058466954255`}, {-2.5972054506146396`,
131.3204559317071}, {-2.4751377150617793`,
124.41148046617661`}, {-2.3428093191721766`,
116.83320142667357`}, {-2.219244573451206,
109.66006481264074`}, {-2.098102041063742,
102.52172170007523`}, {-1.9666988483395362`,
94.639958836513}, {-1.844059305783962,
87.13045114094216}, {-1.7111591028916455`,
78.79357075407717}, {-1.580681113332836,
70.36702900804984}, {-1.4589667739426584`,
62.24555818826738}, {-1.3269917742157384`,
53.091668928965426`}, {-1.2037804246574502`,
44.142890885673}, {-1.0829912884326691`,
34.89763986133133}, {-0.9519414918711455,
24.191729593963185`}, {-0.9045623928707559, 20.}}],
LineBox[{{-2.1401601075477283`, 140.}, {-2.098102041063742,
136.69562893343362`}, {-1.9666988483395362`,
126.18661178201734`}, {-1.844059305783962,
116.17393485458955`}, {-1.7111591028916455`,
105.05809433876955`}, {-1.580681113332836,
93.82270534406645}, {-1.4589667739426584`,
82.9940775843565}, {-1.3269917742157384`,
70.78889190528724}, {-1.2037804246574502`,
58.85718784756399}, {-1.0829912884326691`,
46.530186481775104`}, {-0.9519414918711455,
32.25563945861758}, {-0.8480474174431618, 20.}}],
LineBox[{{-1.7941560359192323`, 140.}, {-1.7111591028916455`,
131.32261792346196`}, {-1.580681113332836,
117.27838168008306`}, {-1.4589667739426584`,
103.74259698044565`}, {-1.3269917742157384`,
88.48611488160905}, {-1.2037804246574502`,
73.571484809455}, {-1.0829912884326691`,
58.16273310221887}, {-0.9519414918711455,
40.31954932327197}, {-0.8296553454782537,
22.288023834132304`}, {-0.8275224073831042,
21.959152502502715`}, {-0.8253894692879546,
21.6297359540765}, {-0.8211235930976555,
20.969255260636764`}, {-0.8148948967985419, 20.}}]},
Annotation[#, "Charting`Private`Tag$60530#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"f/fs\"", FontFamily -> "Times", FontSlant -> Italic, FontSize -> 12,
StripOnInput -> False], TraditionalForm],
FormBox[
StyleBox[
"\"\:4fe1\:955c\:6bd4\\!\\(\\*StyleBox[\\\"(\\\",FontFamily->\\\"Times\\\
\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"dB\\\",FontFamily->\\\"\
Times\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\")\\\",FontFamily->\
\\\"Times\\\",FontWeight->\\\"Bold\\\"]\\)\"", FontFamily -> "Times",
FontSize -> 12, StripOnInput -> False], TraditionalForm]},
AxesOrigin->{-6.907755278982137, 20},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{{-6.907755278982137, -6.214608098422191, -5.809142990314028, \
-5.521460917862246, -5.298317366548036, -4.605170185988091, \
-3.912023005428146, -3.506557897319982, -3.2188758248682006`, \
-2.995732273553991, -2.3025850929940455`, -1.6094379124341003`, \
-1.2039728043259361`, -0.916290731874155, -0.6931471805599453}, Automatic},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-6.907755278982137, -0.6931271807599427}, {20, 140}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{{-6.907755278982137,
FormBox["0.001`", TraditionalForm]}, {-6.214608098422191,
FormBox["0.002`", TraditionalForm]}, {-5.298317366548036,
FormBox["0.005`", TraditionalForm]}, {-4.605170185988091,
FormBox["0.01`", TraditionalForm]}, {-3.912023005428146,
FormBox["0.02`", TraditionalForm]}, {-2.995732273553991,
FormBox["0.05`", TraditionalForm]}, {-2.3025850929940455`,
FormBox["0.1`", TraditionalForm]}, {-1.6094379124341003`,
FormBox["0.2`", TraditionalForm]}, {-0.6931471805599453,
FormBox["0.5`", TraditionalForm]}}, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.763731728649906*^9, 3.763731772346984*^9}, {
3.763731814985632*^9, 3.763731823807863*^9}, {3.7637318785815773`*^9,
3.763731889270794*^9}, {3.763731950198473*^9, 3.7637319916113663`*^9},
3.763732285261977*^9},ExpressionUUID->"8a00ccbd-d880-4106-9b76-\
716c18479502"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwBwQI+/SFib1JlAgAAACsAAAACAAAA8RgNkYqhG8ASVMUz4/5NQE41O+uW
nxvADuVMLMT8TUCqUWlFo50bwIpukCSl+k1AYorF+buZG8CS50oUZ/ZNQNL7
fWLtkRvAIsSJ8OrtTUCz3u4zUIIbwEayEZzy3E1AdaTQ1hVjG8DQP1u+AbtN
QPkvlByhJBvAzuUjKB93TUBf89jiNZ0awA62Zi3q40xAdS+5/8MeGsDOgJa3
cFpMQCCglRTNohnAXQAgcqPTS0ApvS9kVBwZwK//Zm1hQUtA4VJlCtWeGMCW
Q9DG2bhKQPeUWOvTFhjALZJmj9kkSkCiC0jETZEXwLpCWGqAk0lA/frS88AU
F8D9Kzf03wtJQLaWG16yjRbAfnjcgL94SEAfq/8enQ8WwL4Ci7VV70dAHPTf
1wKUFcAa3QzxjmhHQHfpfcvmDRXA6xFhpT3WRkCCV7cVxJAUwHTWY9KfTUZA
63Gumh8JFMAIkfvkbLlFQOnAoRf2gxPAtDIS0M4nRUCXiDDrxQcTwOa6+IHf
n0RAo/x8+ROBEsAmXHl4RgxEQF7pZF5bAxLA1uvihlaCQ0B4ggr+IHsRwLjU
i1io7EJAJlCslWH1EMCaG0o1dFlCQISW6YObeBDAQ/Prrt/PQUB/EslZp+IP
wErt35VkOkFAVun1WArmDsBgtS2bfa5AQFYpG0hj7g3AYviTs/kkQEASwrus
uOEMwNb27t+pHj9ALUyTvgDnC8D0pqecYgY+QAUv5kVF1wrAYcFJjmLVPEAG
ezG9f8wJwGyAU0GGqDtAZriz4azTCMDRpxbncI46QIJOsXvWxQfACuyC77Ja
OUD+1eXC8skGwAKwgFtyOThAo8YS+gTTBcB0fpYewhs3QAQQu6YTxwTASWoQ
kQHjNUDFSpoAFc0DwEyHcSE5vDRAKpFRdFIvA8AAAAAAAAA0QEpiSaQ=
"]],
LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAA8RgNkYqhG8AeVMUz4/5dQE41O+uW
nxvALOVMLMT8XUCqUWlFo50bwNJukCSl+l1AYorF+buZG8Ca50oUZ/ZdQNL7
fWLtkRvAGsSJ8OrtXUCz3u4zUIIbwIKyEZzy3F1AdaTQ1hVjG8DoP1u+Abtd
QPkvlByhJBvAzeUjKB93XUBf89jiNZ0awPC1Zi3q41xAdS+5/8MeGsDFgJa3
cFpcQCCglRTNohnAdgAgcqPTW0ApvS9kVBwZwK//Zm1hQVtA4VJlCtWeGMCk
Q9DG2bhaQPeUWOvTFhjAK5Jmj9kkWkCiC0jETZEXwMRCWGqAk1lA/frS88AU
F8AKLDf03wtZQLaWG16yjRbAlHjcgL94WEAfq/8enQ8WwMoCi7VV71dAHPTf
1wKUFcAs3QzxjmhXQHfpfcvmDRXA6hFhpT3WVkCCV7cVxJAUwHbWY9KfTVZA
63Gumh8JFMAPkfvkbLlVQOnAoRf2gxPAuzIS0M4nVUCXiDDrxQcTwOK6+IHf
n1RAo/x8+ROBEsAkXHl4RgxUQF7pZF5bAxLA2+vihlaCU0B4ggr+IHsRwLjU
i1io7FJAJlCslWH1EMCcG0o1dFlSQISW6YObeBDAR/Prrt/PUUB/EslZp+IP
wEzt35VkOlFAVun1WArmDsBgtS2bfa5QQFYpG0hj7g3AZfiTs/kkUEASwrus
uOEMwNj27t+pHk9ALUyTvgDnC8D4pqecYgZOQAUv5kVF1wrAYsFJjmLVTEAG
ezG9f8wJwGyAU0GGqEtAZriz4azTCMDSpxbncI5KQIJOsXvWxQfADOyC77Ja
SUD+1eXC8skGwAGwgFtyOUhAo8YS+gTTBcB3fpYewhtHQAQQu6YTxwTASmoQ
kQHjRUDFSpoAFc0DwE6HcSE5vERAQt70zxK+AsCGbGId4nhDQB9jhkwDwQHA
DOynVdRGQkAlURC56cgAwPbnm5dCFkFAzy8rNpl3/78CNIty8Ys/QBOgo1RE
gf2/LgaovyELPUDPwRJe6GD7v0VGUdG3QzpA3bVyR3hK+b+hwFA0p3Q3QKuM
QIvtV/e/3Z+W956/NEAtr1LaUdP2vwAAAAAAADRA2HuNYg==
"]],
LineBox[CompressedData["
1:eJwBQQK+/SFib1JlAgAAACMAAAACAAAAzEN83mOCFcAAAAAAAIBhQHfpfcvm
DRXAcM0IPK4gYUCCV7cVxJAUwNjgyt03umBA63Gumh8JFMDNrLyrEUtgQOnA
oRf2gxPAHEwbOLa7X0CXiDDrxQcTwFEY9ULP715Ao/x8+ROBEsA1Cra0aRJe
QF7pZF5bAxLAy2FUyoFDXUB4ggr+IHsRwBW/0YT8YlxAJlCslWH1EMBsKe9P
LoZbQISW6YObeBDA7Oxhhs+3WkB/EslZp+IPwPPjz+CW11lAVun1WArmDsAP
kMRovAVZQFYpG0hj7g3AmfRdjXY3WEASwrusuOEMwCI582f/VldALUyTvgDn
C8A7vX31yYRWQAUv5kVF1wrAClG36gmgVUAGezG9f8wJwFGg/rBkvlRAZriz
4azTCMDe/VCt1OpTQIJOsXvWxQfACTGiMwYEU0D+1eXC8skGwACEoMQVK1JA
o8YS+gTTBcDa3vCW0VRRQAQQu6YTxwTAt0/MLEFqUEDFSpoAFc0DwPZKKrJV
Gk9AQt70zxK+AsDIohMsUzVNQB9jhkwDwQHAEuJ7gD5qS0AlURC56cgAwPLb
aeNjoUlAzy8rNpl3/78CZ+gV9ahHQBOgo1REgf2/owS+T1nIRUDPwRJe6GD7
v7T0/NzJskNA3bVyR3hK+b94kDxnfZdBQKuMQIvtV/e/zO9hc24fP0DxFAW6
Wzv1v6L7tc67izpA9n83Q69C879WbqA/ShI2QL0Qkij7ZPK/AAAAAAAANEAW
KA2a
"]], LineBox[CompressedData["
1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAi6e6TFIwEMAAAAAAAIBhQH8SyVmn
4g/ATe3flWQ6YUBW6fVYCuYOwF+1LZt9rmBAVikbSGPuDcBm+JOz+SRgQBLC
u6y44QzA2Pbu36keX0AtTJO+AOcLwPqmp5xiBl5ABS/mRUXXCsBjwUmOYtVc
QAZ7Mb1/zAnAbIBTQYaoW0BmuLPhrNMIwNOnFudwjlpAgk6xe9bFB8AM7ILv
slpZQP7V5cLyyQbAALCAW3I5WECjxhL6BNMFwHl+lh7CG1dABBC7phPHBMBK
ahCRAeNVQMVKmgAVzQPAT4dxITm8VEBC3vTPEr4CwIZsYh3ieFNAH2OGTAPB
AcAM7KdV1EZSQCVRELnpyADA9uebl0IWUUDPLys2mXf/vwM0i3Lxi09AE6Cj
VESB/b8vBqi/IQtNQM/BEl7oYPu/RUZR0bdDSkDdtXJHeEr5v6DAUDSndEdA
q4xAi+1X97/dn5b3nr9EQPEUBbpbO/W/bFJ5NH2yQUD2fzdDr0Lzv3Lo1VS4
bT1ATr1arO5T8b+vAJAm3UM3QN499ghfXvC/AAAAAAAANED47sVK
"]],
LineBox[CompressedData["
1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAsEF+KhAaCsAAAAAAAIBhQAZ7Mb1/
zAnARDDU6FNJYUBmuLPhrNMIwOQobpAGmWBAgk6xe9bFB8AQp2OrX7FfQP7V
5cLyyQbAANxg8s5HXkCjxhL6BNMFwBcePKay4lxABBC7phPHBMDchFT1wVtb
QMVKmgAVzQPAI+nNaUfrWUBC3vTPEr4CwKcHu6QaV1hAH2OGTAPBAcAP5xFr
idhWQCVRELnpyADA9OGCPdNbVUDPLys2mXf/v4IAl+d2t1NAE6CjVESB/b/d
A8kX9SZSQM/BEl7oYPu/68vS4lJqUEDdtXJHeEr5v8jwZAHRUU1Aq4xAi+1X
97/UR3y1hu9JQPEUBbpbO/W/B6eXgRwfRkD2fzdDr0Lzv0ixBTWTZEJATr1a
rO5T8b/bADRw1BQ9QDpY6QBOdu6/vnQC/uYoNEBy5fA5jWTuvwAAAAAAADRA
vQygSg==
"]],
LineBox[{{-2.7523355664223517`, 140.}, {-2.728036836336132,
138.65058466954252`}, {-2.5972054506146396`,
131.32045593170707`}, {-2.4751377150617793`,
124.4114804661766}, {-2.3428093191721766`,
116.83320142667357`}, {-2.219244573451206,
109.66006481264074`}, {-2.098102041063742,
102.52172170007523`}, {-1.9666988483395362`,
94.63995883651299}, {-1.844059305783962,
87.13045114094216}, {-1.7111591028916455`,
78.79357075407717}, {-1.580681113332836,
70.36702900804983}, {-1.4589667739426584`,
62.245558188267374`}, {-1.3269917742157384`,
53.09166892896543}, {-1.2037804246574502`,
44.142890885673}, {-1.0829912884326691`,
34.89763986133133}, {-0.9519414918711455,
24.19172959396318}, {-0.9045623928707559, 20.}}],
LineBox[{{-2.1401601075477283`, 140.}, {-2.098102041063742,
136.69562893343362`}, {-1.9666988483395362`,
126.18661178201734`}, {-1.844059305783962,
116.17393485458955`}, {-1.7111591028916455`,
105.05809433876955`}, {-1.580681113332836,
93.82270534406643}, {-1.4589667739426584`,
82.9940775843565}, {-1.3269917742157384`,
70.78889190528724}, {-1.2037804246574502`,
58.857187847564}, {-1.0829912884326691`,
46.530186481775104`}, {-0.9519414918711455,
32.25563945861758}, {-0.8480474174431618, 20.}}],
LineBox[{{-1.7941560359192321`, 140.}, {-1.7111591028916455`,
131.32261792346193`}, {-1.580681113332836,
117.27838168008304`}, {-1.4589667739426584`,
103.74259698044564`}, {-1.3269917742157384`,
88.48611488160905}, {-1.2037804246574502`,
73.571484809455}, {-1.0829912884326691`,
58.16273310221888}, {-0.9519414918711455,
40.31954932327197}, {-0.8296553454782537,
22.288023834132304`}, {-0.8275224073831042,
21.95915250250271}, {-0.8253894692879546,
21.6297359540765}, {-0.8211235930976555,
20.96925526063676}, {-0.8148948967985419, 20.}}]},
Annotation[#, "Charting`Private`Tag$60609#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"f/fs\"", FontFamily -> "Times", FontSlant -> Italic, FontSize -> 12,
StripOnInput -> False], TraditionalForm],
FormBox[
StyleBox[
"\"\:4fe1\:955c\:6bd4\\!\\(\\*StyleBox[\\\"(\\\",FontFamily->\\\"Times\\\
\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\"dB\\\",FontFamily->\\\"\
Times\\\",FontWeight->\\\"Bold\\\"]\\)\\!\\(\\*StyleBox[\\\")\\\",FontFamily->\
\\\"Times\\\",FontWeight->\\\"Bold\\\"]\\)\"", FontFamily -> "Times",
FontSize -> 12, StripOnInput -> False], TraditionalForm]},
AxesOrigin->{-6.907755278982137, 20},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{{-6.907755278982137, -6.214608098422191, -5.809142990314028, \
-5.521460917862246, -5.298317366548036, -4.605170185988091, \
-3.912023005428146, -3.506557897319982, -3.2188758248682006`, \
-2.995732273553991, -2.3025850929940455`, -1.6094379124341003`, \
-1.2039728043259361`, -0.916290731874155, -0.6931471805599453}, Automatic},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-6.907755278982137, -0.6931271807599427}, {20, 140}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{{-6.907755278982137,
FormBox["0.001`", TraditionalForm]}, {-6.214608098422191,
FormBox["0.002`", TraditionalForm]}, {-5.298317366548036,
FormBox["0.005`", TraditionalForm]}, {-4.605170185988091,
FormBox["0.01`", TraditionalForm]}, {-3.912023005428146,
FormBox["0.02`", TraditionalForm]}, {-2.995732273553991,
FormBox["0.05`", TraditionalForm]}, {-2.3025850929940455`,
FormBox["0.1`", TraditionalForm]}, {-1.6094379124341003`,
FormBox["0.2`", TraditionalForm]}, {-0.6931471805599453,
FormBox["0.5`", TraditionalForm]}}, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.763731728649906*^9, 3.763731772346984*^9}, {
3.763731814985632*^9, 3.763731823807863*^9}, {3.7637318785815773`*^9,
3.763731889270794*^9}, {3.763731950198473*^9, 3.7637319916113663`*^9},
3.7637322853880653`*^9},ExpressionUUID->"adfa2190-d49d-4b3a-ae4a-\
95fb3af50a45"]
}, Open ]],
Cell[BoxData["o"], "Input",
CellChangeTimes->{
3.76373172512071*^9},ExpressionUUID->"11e4b6a5-b8dc-4089-914b-9232303f2328"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"gzoh2", "[", "\[CapitalOmega]_", "]"}], ":=",
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{"\[CapitalOmega]", "/", "2"}], "]"}],
RowBox[{"\[CapitalOmega]", "/", "2"}]], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"gzoh2", "[",
RowBox[{"2", "\[Pi]",
FractionBox["f", "fs"]}], "]"}], "/",
RowBox[{"gzoh2", "[",
RowBox[{"2", "\[Pi]",
FractionBox[
RowBox[{"fs", "-", "f"}], "fs"]}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.7637324076969423`*^9,
3.763732522547728*^9}},ExpressionUUID->"fcbafc2b-4562-4cb3-91d6-\
3e791ebe2236"],
Cell[BoxData[
RowBox[{"Abs", "[",
RowBox[{"1", "-",
FractionBox["fs", "f"]}], "]"}]], "Output",
CellChangeTimes->{{3.763732402576475*^9, 3.76373241341571*^9}, {
3.763732464688048*^9,
3.763732525512781*^9}},ExpressionUUID->"ce0abb4a-a711-471b-ab9f-\
4592cf682bd8"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{281, Automatic}, {-141, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 3434, 84, 240, "Input",ExpressionUUID->"04a194f7-f4be-4c4f-87ed-62cdbd141b04"],
Cell[4017, 108, 4972, 102, 237, "Output",ExpressionUUID->"9ee2cdd3-76e3-41b1-8719-7a99d3d86b0c"]
}, Open ]],
Cell[9004, 213, 152, 3, 30, InheritFromParent,ExpressionUUID->"f4d2d21c-e5b3-4a3c-8722-da57b1d34e44"],
Cell[CellGroupData[{
Cell[9181, 220, 5440, 146, 482, "Input",ExpressionUUID->"9e851b42-f8d4-43bc-a209-4828c9644588"],
Cell[14624, 368, 9487, 186, 237, "Output",ExpressionUUID->"8a00ccbd-d880-4106-9b76-716c18479502"],
Cell[24114, 556, 9485, 186, 237, "Output",ExpressionUUID->"adfa2190-d49d-4b3a-ae4a-95fb3af50a45"]
}, Open ]],
Cell[33614, 745, 126, 2, 30, "Input",ExpressionUUID->"11e4b6a5-b8dc-4089-914b-9232303f2328"],
Cell[CellGroupData[{
Cell[33765, 751, 708, 21, 90, "Input",ExpressionUUID->"fcbafc2b-4562-4cb3-91d6-3e791ebe2236"],
Cell[34476, 774, 277, 7, 51, "Output",ExpressionUUID->"ce0abb4a-a711-471b-ab9f-4592cf682bd8"]
}, Open ]]
}
]
*)