-
Notifications
You must be signed in to change notification settings - Fork 624
/
filt_cnn_artifact.m
65 lines (48 loc) · 1.74 KB
/
filt_cnn_artifact.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
for i = 0:34
close all
in_fn = ['results/' int2str(i) '_final_res.png'];
out_fn = ['results/' int2str(i) '_final_res2.png'];
if exist(in_fn, 'file') ~= 2
fprintf('file doesn''t exist: %s\n', in_fn);
continue
end
if exist(out_fn, 'file') == 2
fprintf('result already exists: %s\n', out_fn);
continue
end
I = im2double(imread(in_fn));
G = im2double(imread(['data/' int2str(i) '_naive.jpg']));
M = im2double(imread(['data/' int2str(i) '_c_mask.jpg']));
B = im2double(imread(['data/' int2str(i) '_target.jpg']));
tr= 3;
h = fspecial('gaussian', [2*tr+1 2*tr+1], tr);
sM = imfilter(M, h, 'same');
sM(sM > 0.01) = 1; % dialte
sM(sM < 0.01) = 0;
sM = imfilter(sM, h, 'same');
addpath 3rdparty/colorspace
I_lab = colorspace('rgb->lab', I);
addpath 3rdparty/guided_filter
addpath 3rdparty/patchmatch-2.0
r = 2; % try r=2, 4, or 8
eps = 0.1^2; % try eps=0.1^2, 0.2^2, 0.4^2
O_lab = I_lab;
O_lab(:,:,2) = guidedfilter_color(G, I_lab(:,:,2), r, eps);
O_lab(:,:,3) = guidedfilter_color(G, I_lab(:,:,3), r, eps);
% runs here, deconvolution CNN artifact removed
O1 = colorspace('lab->rgb', O_lab);
% one patchmatch pass to further remove color artifact
cores = 4;
algo = 'cputiled';
patch_w = 7;
ann = nnmex(O1, B, algo, patch_w, [], [], [], [], [], cores);
O2_base = im2double(votemex(B, ann));
r = 3;
h = fspecial('gaussian', [2*r+1 2*r+1], r/3);
O1_base = imfilter(O1, h, 'same');
O2 = O2_base + O1 - O1_base;
O2 = O2.*sM + B.*(1-sM);
figure; imshow(I)
figure; imshow(O2)
imwrite(O2, out_fn);
end