This repository contains the PyTorch implementation of the paper Multi-Scale Dense Networks for Resource Efficient Image Classification
Citation:
@inproceedings{huang2018multi,
title={Multi-scale dense networks for resource efficient image classification},
author={Huang, Gao and Chen, Danlu and Li, Tianhong and Wu, Felix and van der Maaten, Laurens and Weinberger, Kilian Q},
journal={ICLR},
year={2018}
}
- Python3
- PyTorch >= 0.4.0
python3 main.py --data-root /PATH/TO/CIFAR100 --data cifar100 --save /PATH/TO/SAVE \
--arch msdnet --batch-size 64 --epochs 300 --nBlocks 7 \
--stepmode even --step 2 --base 4 --nChannels 16 \
-j 16
python3 main.py --data-root /PATH/TO/CIFAR100 --data cifar100 --save /PATH/TO/SAVE \
--arch msdnet --batch-size 64 --epochs 300 --nBlocks 5 \
--stepmode lin_grow --step 1 --base 1 --nChannels 16 --use-valid \
-j 16
python3 main.py --data-root /PATH/TO/ImageNet --data ImageNet --save /PATH/TO/SAVE \
--arch msdnet --batch-size 256 --epochs 90 --nBlocks 5 \
--stepmode even --step 4 --base 4 --nChannels 32 --growthRate 16 \
--grFactor 1-2-4-4 --bnFactor 1-2-4-4 \
--use-valid --gpu 0,1,2,3 -j 16 \
- Download pretrained models and validation indeces on ImageNet.
- Test script:
python3 main.py --data-root /PATH/TO/ImageNet --data ImageNet --save /PATH/TO/SAVE \
--arch msdnet --batch-size 256 --epochs 90 --nBlocks 5 \
--stepmode even --step 4 --base 4 --nChannels 32 --growthRate 16 \
--grFactor 1-2-4-4 --bnFactor 1-2-4-4 \
--evalmode dynamic --evaluate-from /PATH/TO/CHECKPOINT/ \
--use-valid --gpu 0,1,2,3 -j 16 \
We would like to take immense thanks to Danlu Chen, for providing us the prime version of codes.