-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmain.py
277 lines (250 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import numpy
import argparse
numpy.random.seed(8)
torch.manual_seed(8)
torch.cuda.manual_seed(8)
from network import VaeGan
from torch.autograd import Variable
from torch.utils.data import Dataset
from tensorboardX import SummaryWriter
from torch.optim import RMSprop,Adam,SGD
from torch.optim.lr_scheduler import ExponentialLR,MultiStepLR
import progressbar
from torchvision.utils import make_grid
from generator import CELEBA,CELEBA_SLURM
from utils import RollingMeasure
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VAEGAN")
parser.add_argument("--train_folder",action="store",dest="train_folder")
parser.add_argument("--test_folder",action="store",dest="test_folder")
parser.add_argument("--n_epochs",default=12,action="store",type=int,dest="n_epochs")
parser.add_argument("--z_size",default=128,action="store",type=int,dest="z_size")
parser.add_argument("--recon_level",default=3,action="store",type=int,dest="recon_level")
parser.add_argument("--lambda_mse",default=1e-6,action="store",type=float,dest="lambda_mse")
parser.add_argument("--lr",default=3e-4,action="store",type=float,dest="lr")
parser.add_argument("--decay_lr",default=0.75,action="store",type=float,dest="decay_lr")
parser.add_argument("--decay_mse",default=1,action="store",type=float,dest="decay_mse")
parser.add_argument("--decay_margin",default=1,action="store",type=float,dest="decay_margin")
parser.add_argument("--decay_equilibrium",default=1,action="store",type=float,dest="decay_equilibrium")
parser.add_argument("--slurm",default=False,action="store",type=bool,dest="slurm")
args = parser.parse_args()
train_folder = args.train_folder
test_folder = args.test_folder
z_size = args.z_size
recon_level = args.recon_level
decay_mse = args.decay_mse
decay_margin = args.decay_margin
n_epochs = args.n_epochs
lambda_mse = args.lambda_mse
lr = args.lr
decay_lr = args.decay_lr
decay_equilibrium = args.decay_equilibrium
slurm = args.slurm
writer = SummaryWriter(comment="_CELEBA_NEW_DATA_STOCK_GAN")
net = VaeGan(z_size=z_size,recon_level=recon_level).cuda()
# DATASET
if not slurm:
dataloader = torch.utils.data.DataLoader(CELEBA(train_folder), batch_size=64,
shuffle=True, num_workers=4)
# DATASET for test
# if you want to split train from test just move some files in another dir
dataloader_test = torch.utils.data.DataLoader(CELEBA(test_folder), batch_size=100,
shuffle=False, num_workers=1)
else:
dataloader = torch.utils.data.DataLoader(CELEBA_SLURM(train_folder), batch_size=64,
shuffle=True, num_workers=1)
# DATASET for test
# if you want to split train from test just move some files in another dir
dataloader_test = torch.utils.data.DataLoader(CELEBA_SLURM(test_folder), batch_size=100,
shuffle=False, num_workers=1)
#margin and equilibirum
margin = 0.35
equilibrium = 0.68
#mse_lambda = 1.0
# OPTIM-LOSS
# an optimizer for each of the sub-networks, so we can selectively backprop
#optimizer_encoder = Adam(params=net.encoder.parameters(),lr = lr,betas=(0.9,0.999))
optimizer_encoder = RMSprop(params=net.encoder.parameters(),lr=lr,alpha=0.9,eps=1e-8,weight_decay=0,momentum=0,centered=False)
#lr_encoder = MultiStepLR(optimizer_encoder,milestones=[2],gamma=1)
lr_encoder = ExponentialLR(optimizer_encoder, gamma=decay_lr)
#optimizer_decoder = Adam(params=net.decoder.parameters(),lr = lr,betas=(0.9,0.999))
optimizer_decoder = RMSprop(params=net.decoder.parameters(),lr=lr,alpha=0.9,eps=1e-8,weight_decay=0,momentum=0,centered=False)
lr_decoder = ExponentialLR(optimizer_decoder, gamma=decay_lr)
#lr_decoder = MultiStepLR(optimizer_decoder,milestones=[2],gamma=1)
#optimizer_discriminator = Adam(params=net.discriminator.parameters(),lr = lr,betas=(0.9,0.999))
optimizer_discriminator = RMSprop(params=net.discriminator.parameters(),lr=lr,alpha=0.9,eps=1e-8,weight_decay=0,momentum=0,centered=False)
lr_discriminator = ExponentialLR(optimizer_discriminator, gamma=decay_lr)
#lr_discriminator = MultiStepLR(optimizer_discriminator,milestones=[2],gamma=1)
batch_number = len(dataloader)
step_index = 0
widgets = [
'Batch: ', progressbar.Counter(),
'/', progressbar.FormatCustomText('%(total)s', {"total": batch_number}),
' ', progressbar.Bar(marker="-", left='[', right=']'),
' ', progressbar.ETA(),
' ',
progressbar.DynamicMessage('loss_nle'),
' ',
progressbar.DynamicMessage('loss_encoder'),
' ',
progressbar.DynamicMessage('loss_decoder'),
' ',
progressbar.DynamicMessage('loss_discriminator'),
' ',
progressbar.DynamicMessage('loss_mse_layer'),
' ',
progressbar.DynamicMessage('loss_kld'),
' ',
progressbar.DynamicMessage("epoch")
]
# for each epoch
if slurm:
print(args)
for i in range(n_epochs):
progress = progressbar.ProgressBar(min_value=0, max_value=batch_number, initial_value=0,
widgets=widgets).start()
# reset rolling average
loss_nle_mean = RollingMeasure()
loss_encoder_mean = RollingMeasure()
loss_decoder_mean = RollingMeasure()
loss_discriminator_mean = RollingMeasure()
loss_reconstruction_layer_mean = RollingMeasure()
loss_kld_mean = RollingMeasure()
gan_gen_eq_mean = RollingMeasure()
gan_dis_eq_mean = RollingMeasure()
#print("LR:{}".format(lr_encoder.get_lr()))
# for each batch
for j, (data_batch,target_batch) in enumerate(dataloader):
# set to train mode
net.train()
# target and input are the same images
data_target = Variable(target_batch, requires_grad=False).float().cuda()
data_in = Variable(data_batch, requires_grad=False).float().cuda()
# get output
out, out_labels, out_layer, mus, variances = net(data_in)
# split so we can get the different parts
out_layer_predicted = out_layer[:len(out_layer) // 2]
out_layer_original = out_layer[len(out_layer) // 2:]
# TODO set a batch_len variable to get a clean code here
out_labels_original = out_labels[:len(out_labels) // 2]
out_labels_sampled = out_labels[-len(out_labels) // 2:]
# loss, nothing special here
nle_value, kl_value, mse_value, bce_dis_original_value, bce_dis_sampled_value,\
bce_gen_original_value,bce_gen_sampled_value= VaeGan.loss(data_target, out, out_layer_original,
out_layer_predicted, out_labels_original,
out_labels_sampled, mus,
variances)
# THIS IS THE MOST IMPORTANT PART OF THE CODE
loss_encoder = torch.sum(kl_value)+torch.sum(mse_value)
loss_discriminator = torch.sum(bce_dis_original_value) + torch.sum(bce_dis_sampled_value)
loss_decoder = torch.sum(lambda_mse * mse_value) - (1.0 - lambda_mse) * loss_discriminator
#loss_decoder = torch.sum(mse_lambda * mse_value) + (1.0-mse_lambda)*(torch.sum(bce_gen_sampled_value)+torch.sum(bce_gen_original_value))
# register mean values of the losses for logging
loss_nle_mean(torch.mean(nle_value).data.cpu().numpy()[0])
loss_discriminator_mean((torch.mean(bce_dis_original_value) + torch.mean(bce_dis_sampled_value)).data.cpu().numpy()[0])
loss_decoder_mean((torch.mean(lambda_mse * mse_value) - (1 - lambda_mse) * (torch.mean(bce_dis_original_value) + torch.mean(bce_dis_sampled_value))).data.cpu().numpy()[0])
#loss_decoder_mean((torch.mean(mse_lambda * mse_value) + (1-mse_lambda)*(torch.mean(bce_gen_original_value) + torch.mean(bce_gen_sampled_value))).data.cpu().numpy()[0])
loss_encoder_mean((torch.mean(kl_value) + torch.mean(mse_value)).data.cpu().numpy()[0])
loss_reconstruction_layer_mean(torch.mean(mse_value).data.cpu().numpy()[0])
loss_kld_mean(torch.mean(kl_value).data.cpu().numpy()[0])
# selectively disable the decoder of the discriminator if they are unbalanced
train_dis = True
train_dec = True
if torch.mean(bce_dis_original_value).data[0] < equilibrium-margin or torch.mean(bce_dis_sampled_value).data[0] < equilibrium-margin:
train_dis = False
if torch.mean(bce_dis_original_value).data[0] > equilibrium+margin or torch.mean(bce_dis_sampled_value).data[0] > equilibrium+margin:
train_dec = False
if train_dec is False and train_dis is False:
train_dis = True
train_dec = True
#aggiungo log
if train_dis:
gan_dis_eq_mean(1.0)
else:
gan_dis_eq_mean(0.0)
if train_dec:
gan_gen_eq_mean(1.0)
else:
gan_gen_eq_mean(0.0)
# BACKPROP
# clean grads
net.zero_grad()
# encoder
loss_encoder.backward(retain_graph=True)
# someone likes to clamp the grad here
#[p.grad.data.clamp_(-1,1) for p in net.encoder.parameters()]
# update parameters
optimizer_encoder.step()
# clean others, so they are not afflicted by encoder loss
net.zero_grad()
#decoder
if train_dec:
loss_decoder.backward(retain_graph=True)
#[p.grad.data.clamp_(-1,1) for p in net.decoder.parameters()]
optimizer_decoder.step()
#clean the discriminator
net.discriminator.zero_grad()
#discriminator
if train_dis:
loss_discriminator.backward()
#[p.grad.data.clamp_(-1,1) for p in net.discriminator.parameters()]
optimizer_discriminator.step()
# LOGGING
if slurm:
progress.update(progress.value + 1, loss_nle=loss_nle_mean.measure,
loss_encoder=loss_encoder_mean.measure,
loss_decoder=loss_decoder_mean.measure,
loss_discriminator=loss_discriminator_mean.measure,
loss_mse_layer=loss_reconstruction_layer_mean.measure,
loss_kld=loss_kld_mean.measure,
epoch=i + 1)
# EPOCH END
if slurm:
progress.update(progress.value + 1, loss_nle=loss_nle_mean.measure,
loss_encoder=loss_encoder_mean.measure,
loss_decoder=loss_decoder_mean.measure,
loss_discriminator=loss_discriminator_mean.measure,
loss_mse_layer=loss_reconstruction_layer_mean.measure,
loss_kld=loss_kld_mean.measure,
epoch=i + 1)
lr_encoder.step()
lr_decoder.step()
lr_discriminator.step()
margin *=decay_margin
equilibrium *=decay_equilibrium
#margin non puo essere piu alto di equilibrium
if margin > equilibrium:
equilibrium = margin
lambda_mse *=decay_mse
if lambda_mse > 1:
lambda_mse=1
progress.finish()
writer.add_scalar('loss_encoder', loss_encoder_mean.measure, step_index)
writer.add_scalar('loss_decoder', loss_decoder_mean.measure, step_index)
writer.add_scalar('loss_discriminator', loss_discriminator_mean.measure, step_index)
writer.add_scalar('loss_reconstruction', loss_nle_mean.measure, step_index)
writer.add_scalar('loss_kld',loss_kld_mean.measure,step_index)
writer.add_scalar('gan_gen',gan_gen_eq_mean.measure,step_index)
writer.add_scalar('gan_dis',gan_dis_eq_mean.measure,step_index)
for j, (data_batch,target_batch) in enumerate(dataloader_test):
net.eval()
data_in = Variable(data_batch, requires_grad=False).float().cuda()
data_target = Variable(target_batch, requires_grad=False).float().cuda()
out = net(data_in)
out = out.data.cpu()
out = (out + 1) / 2
out = make_grid(out, nrow=8)
writer.add_image("reconstructed", out, step_index)
out = net(None, 100)
out = out.data.cpu()
out = (out + 1) / 2
out = make_grid(out, nrow=8)
writer.add_image("generated", out, step_index)
out = data_target.data.cpu()
out = (out + 1) / 2
out = make_grid(out, nrow=8)
writer.add_image("original", out, step_index)
break
step_index += 1
exit(0)