-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_data.sh
executable file
·112 lines (102 loc) · 4.59 KB
/
prepare_data.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
mkdir -p data/bp_dataset
if test -d "data/commonvoice_dataset/preprocessed"; then
python scripts/common_voice.py --skip-download --skip-preprocessing
elif test -d "data/commonvoice_dataset/downloads"; then
python scripts/common_voice.py --skip-download
else
python scripts/common_voice.py --download-url $1 # INSERT COMMON VOICE LINK HERE #
fi
for data_set in cetuc lapsbm mls sid tedx voxforge; do
if test -d "data/${data_set}_dataset/preprocessed"; then
python scripts/common_voice.py --skip-download --skip-preprocessing
elif test -d "data/${data_set}_dataset/downloads"; then
python scripts/common_voice.py --skip-download
else
python scripts/${data_set}.py
fi
done
for data_set in cetuc_dataset commonvoice_dataset mls_dataset tedx_dataset voxforge_dataset sid_dataset lapsbm_dataset; do
python scripts/filter_dataset.py data/$data_set/preprocessed/train \
data/$data_set/preprocessed/test \
--output-dir data/$data_set/preprocessed \
--output-name train_filtered -rs -l --use-wer
done
python scripts/join_datasets.py \
data/cetuc_dataset/preprocessed/train_filtered \
data/commonvoice_dataset/preprocessed/train_filtered \
data/mls_dataset/preprocessed/train_filtered \
data/tedx_dataset/preprocessed/train_filtered \
data/voxforge_dataset/preprocessed/train_filtered \
data/sid_dataset/preprocessed/train_filtered \
data/lapsbm_dataset/preprocessed/train_filtered \
--output-dir data/bp_dataset \
--output-name train_raw \
--skip-empty
python scripts/filter_dataset.py data/bp_dataset/train_raw \
data/cetuc_dataset/preprocessed/test \
data/commonvoice_dataset/preprocessed/test \
data/mls_dataset/preprocessed/test \
data/tedx_dataset/preprocessed/test \
data/voxforge_dataset/preprocessed/test \
data/sid_dataset/preprocessed/test \
data/lapsbm_dataset/preprocessed/test \
--output-dir data/bp_dataset \
--output-name train_filtered -rs -l --use-wer
for ext in tsv ltr wrd; do
cp data/commonvoice_dataset/preprocessed/test.$ext data/bp_dataset/test_raw.$ext
cp data/commonvoice_dataset/preprocessed/valid.$ext data/bp_dataset/valid_raw.$ext
for data_set in cetuc_dataset commonvoice_dataset mls_dataset tedx_dataset voxforge_dataset sid_dataset lapsbm_dataset; do
cp data/$data_set/preprocessed/test.$ext data/bp_dataset/test_${data_set}.$ext
# Necessary to train the models, even if validation is not used in these cases
if ! test -f "data/$data_set/preprocessed/valid.$ext"; then
cp data/$data_set/preprocessed/test.$ext data/$data_set/preprocessed/valid.$ext
fi
done
done
for data_set in cetuc_dataset commonvoice_dataset mls_dataset tedx_dataset voxforge_dataset sid_dataset lapsbm_dataset; do
cp data/$data_set/preprocessed/dict.ltr.txt data/$data_set/dict.ltr.txt
python scripts/limit_dataset_frames.py data/$data_set/preprocessed/train_filtered.tsv \
--frame-limit 480000 \
--output-dir data/$data_set \
--output-name train_480
for ext in tsv ltr wrd; do
cp data/$data_set/train_480.$ext data/$data_set/train.$ext
done
python scripts/limit_dataset_frames.py data/$data_set/preprocessed/valid.tsv \
--frame-limit 480000 \
--output-dir data/$data_set \
--output-name valid_480
for ext in tsv ltr wrd; do
cp data/$data_set/valid_480.$ext data/$data_set/valid.$ext
done
# If you want to limit test subsets
# python scripts/limit_dataset_frames.py data/$data_set/preprocessed/test.tsv \
# --frame-limit 480000 \
# --output-dir data/$data_set \
# --output-name test_480
# for ext in tsv ltr wrd; do
# cp data/$data_set/test_480.$ext data/$data_set/test.$ext
# done
done
python scripts/limit_dataset_frames.py data/bp_dataset/train_filtered.tsv \
--frame-limit 480000 \
--output-dir data/bp_dataset \
--output-name train_480
for ext in tsv ltr wrd; do
cp data/bp_dataset/train_480.$ext data/bp_dataset/train.$ext
done
python scripts/limit_dataset_frames.py data/bp_dataset/valid_raw.tsv \
--frame-limit 480000 \
--output-dir data/bp_dataset \
--output-name valid_480
for ext in tsv ltr wrd; do
cp data/bp_dataset/valid_480.$ext data/bp_dataset/valid.$ext
done
# If you want to limit test subsets
# python scripts/limit_dataset_frames.py data/bp_dataset/test_raw.tsv \
# --frame-limit 480000 \
# --output-dir data/bp_dataset \
# --output-name test_480
# for ext in tsv ltr wrd; do
# cp data/bp_dataset/test_480.$ext data/bp_dataset/test.$ext
# done