-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathrun-twitter-experiments.py
61 lines (49 loc) · 2.32 KB
/
run-twitter-experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
import link_prediction_scores as lp
import pickle, json
import os
import tensorflow as tf
# Runtime parameters
NUM_REPEATS = 3
RANDOM_SEED = 0
FRAC_EDGES_HIDDEN = [0.25, 0.5, 0.75]
# Read in twitter network
TRAIN_TEST_SPLITS_FOLDER = './train-test-splits/'
network_dir = './twitter/twitter-combined-adj.pkl'
twitter_adj = None
with open(network_dir, 'rb') as f:
twitter_adj = pickle.load(f)
### ---------- RUN LINK PREDICTION TESTS ---------- ###
for i in range(NUM_REPEATS):
twitter_results = {} # nested dictionary: experiment --> results
# Check existing experiment results, increment file number by 1
past_results = os.listdir('./results/')
experiment_num = 0
experiment_file_name = 'twitter-experiment-{}-results.json'.format(experiment_num)
while (experiment_file_name in past_results):
experiment_num += 1
experiment_file_name = 'twitter-experiment-{}-results.json'.format(experiment_num)
twitter_results_dir = './results/' + experiment_file_name
# Iterate over fractions of edges to hide
for frac_hidden in FRAC_EDGES_HIDDEN:
val_frac = 0.1
test_frac = frac_hidden - val_frac
# Read train-test split
experiment_name = 'twitter-combined-{}-hidden'.format(frac_hidden)
print "Current experiment: ", experiment_name
train_test_split_file = TRAIN_TEST_SPLITS_FOLDER + experiment_name + '.pkl'
# Run all link prediction methods on current graph, store results
twitter_results[experiment_name] = lp.calculate_all_scores(twitter_adj, features_matrix=None,
directed=True, \
test_frac=test_frac, val_frac=val_frac, \
random_state=RANDOM_SEED, verbose=2,
train_test_split_file=train_test_split_file,
tf_dtype=tf.float16)
# Save experiment results at each iteration
with open(twitter_results_dir, 'w') as fp:
json.dump(twitter_results, fp, indent=4)
# Save final experiment results
with open(twitter_results_dir, 'w') as fp:
json.dump(twitter_results, fp, indent=4)