Image segmentation and accuracy prediction via Multi-atlas segmentation (MAS) and Reverse classification accuracy (RCA)
This repository contains an extended version of the source code corresponding to the paper "Segmentación multi-atlas de imágenes médicas con selección de atlas inteligente y control de calidad automático" (La Plata, 2018). You can check out our paper here: http://sedici.unlp.edu.ar/handle/10915/73180.
The key features of the project are as follows:
- Atlas selection by image similarity. Available image measures are: Mean absolute error (MAE), Mean squared error (MSE), Normalized cross correlation (NCC) and Mutual information (MI).
- Deformable image registration (with affine initialization) via SimpleElastix.
- Two label fusion techniques: Voting and STAPLE.
- Quality evaluation for predicted segmentations via RCA.
This project uses Python 3.8.10.
- Create and activate virtual environment: 1)
python3 -m venv env
2)source env/bin/activate
- Install required packages:
pip install -r requirements.txt
- Install project modules (src):
pip install -e .
- Install SimpleElastix toolbox following this guide.
- Multi-atlas:
./01_run_multiatlas.sh
- RCA:
./02_run_rca.sh
- Mansilla, L., & Ferrante, E. (2018). Segmentación multi-atlas de imágenes médicas con selección de atlas inteligente y control de calidad automático. In XXIV Congreso Argentino de Ciencias de la Computación (La Plata, 2018).