-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSuperMatrix.py
executable file
·235 lines (213 loc) · 8.74 KB
/
SuperMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/python2
from __future__ import division
import sys,gc
from ElectricField import ElectricField
import numpy as np
from scipy import linalg,integrate
#import matplotlib.pyplot as plt
#from matplotlib.backends.backend_pdf import PdfPages
import time
import pickle
from ctypes import *
from copy import copy
import mkl
mkl.set_num_threads(12)
#from scipy.interpolate import interp1d,UnivariateSpline
HBAR = 1.05457148e-34
#HBAR = 1.0
class SuperMatrix(object):
"""
"""
def __init__(self,file_in,file_out,ef):
"""
"""
self.libcumtrapz = CDLL("./cumtrapz/src/obj/libcumtrapz.so")
self.initlibcumtrapz()
self.file_out = file_out
#self.pp = PdfPages(self.file_out+".pdf")
dictf = open(file_in,'r')
self.parameter = eval(dictf.read())
self.omega = self.parameter['omega']
self.gamma = self.parameter['gamma']
self.group = self.parameter['level_group']
self.dipole = self.parameter['dipole'][0]
self.n = self.parameter['n']# number of levels
self.N = self.n**2 # the number of independent terms in density matrix
self.decoherence = self.parameter['decoherence_matrix']
self.T = [] # time independent part d rho/ dt = T rho
self.D = [] # time dependent part d rho/ dt = T rho
self.final = np.zeros((self.N,self.N),complex) # final markov matrix
self.EField = ef
self.smpnum = self.EField.sample
self.cutoff = self.EField.cutoff
self.tsample = np.linspace(0,self.EField.cutoff,self.smpnum)
env_vec = np.vectorize(self.EField.envelope)
self.envelope = env_vec(self.tsample)
self.dt = self.tsample[1]-self.tsample[0]
self.Dfunction = np.empty((self.smpnum,self.N,self.N),complex)
self.DfunctionTemp =[] #np.empty((self.N,self.N,self.smpnum),complex)
self.order = 0
self.parameter = {}
dictf.close()
def ij2idx(self,i,j):
"""
0 1 2
3 4 5
6 7 8
"""
idx = self.n*i+j
return idx
def rotate_omega(self,i,j):
if j<i:
print "error"
if i in self.group[0]:
if j in self.group[0]:
return self.omega[i]-self.omega[j]
else:
return self.omega[i]-self.omega[j]-self.EField.carrier_freq
else:
return self.omega[i]-self.omega[j]
def prepareT(self):
self.T = np.zeros((self.N,self.N),complex) # time independent part d rho/ dt = T rho
for i in xrange(self.n):
for j in xrange(i,self.n):
for k in self.decoherence[i][j]:
self.T[self.ij2idx(i,j)][self.ij2idx(k[0],k[1])]+=k[2]
if i != j:
self.T[self.ij2idx(j,i)][self.ij2idx(k[1],k[0])]+=k[2]
for i in xrange(self.n):
for j in xrange(i+1,self.n):
if self.rotate_omega(i,j) > 1e11:
print i,j
print "error"
self.T[self.ij2idx(i,j)][self.ij2idx(i,j)]+= -1.0j*self.rotate_omega(i,j)
if i!= j:
self.T[self.ij2idx(j,i)][self.ij2idx(j,i)]+= 1.0j*self.rotate_omega(i,j)
def prepareD(self):
self.D = np.zeros((self.N,self.N),complex) # time dependent part d rho/ dt = T rho
for i in xrange(self.n):
for j in xrange(self.n):
for k in xrange(self.n):
self.D[self.ij2idx(i,j)][self.ij2idx(k,j)] += -1.0j*(self.dipole[i][k] )/ HBAR
self.D[self.ij2idx(i,j)][self.ij2idx(i,k)] -= -1.0j*(self.dipole[k][j] )/ HBAR
def zeroOrder(self):
print "zero order"
for i in enumerate(self.tsample):
# sys.stdout.write('%s\r' % i[0])
print i[0]
sys.stdout.flush()
self.Dfunction[i[0],:,:]=linalg.expm(self.T*i[1],15)
# def addOrder(self):
# last = self.Dfunction[...,-1]
# self.DfunctionTemp = np.empty((self.smpnum,self.N,self.N),complex)
# for i in xrange(self.smpnum):
# self.DfunctionTemp[i,...] = np.dot(self.T+self.D*self.EField.envelope(self.tsample[i]),self.Dfunction[i,...])
# # self.Dfunction = []
# # self.T = []
# # self.D = []
# del self.Dfunction
# del self.T
# del self.D
# gc.collect() # clean up memory
# #should rewrite cumtrapz with C to use less memory
# #self.Dfunction = np.zeros((self.N,self.N,self.smpnum),complex)
# self.Dfunction = integrate.cumtrapz(self.DfunctionTemp,self.tsample)
# del self.DfunctionTemp
# gc.collect()
# self.Dfunction = np.concatenate((np.zeros((self.N,self.N,1),complex),self.Dfunction),axis=-1)
# for i in xrange(self.N):
# self.Dfunction[i,i,:] += np.ones(self.smpnum,complex)
# self.order += 1
# now = self.Dfunction[...,-1]
# return linalg.norm(now-last)
# #print "difference norm %f" %linalg.norm(now-last)
def addOrder2(self):
last = copy(self.Dfunction[-1,...])
#self.DfunctionTemp = np.empty((self.smpnum,self.N,self.N),complex)
#self.DfunctionTemp = np.empty((self.N,self.N,self.smpnum),complex)
# for i in xrange(self.smpnum):
# tmp = np.dot(self.T+self.D*self.envelope[i],self.Dfunction[i,...])
# self.Dfunction[i,...] = copy(tmp)
#del self.DfunctionTemp
# del self.T
# del self.D
#gc.collect() # clean up memory
self.ctype_addorder()
# self.ctype_cumtrapz()
# self.Dfunction = integrate.cumtrapz(self.DfunctionTemp,self.tsample)
# self.Dfunction = np.concatenate((np.zeros((self.N,self.N,1),complex),self.Dfunction),axis=-1)
# for i in xrange(self.N):
# self.Dfunction[i,i,:] += np.ones(self.smpnum,complex)
self.order += 1
now = self.Dfunction[-1,...]
return linalg.norm(now-last)
def write(self):
data={}
data['T'] = self.T
data['P'] = self.Dfunction[-1,:,:]
data['cutoff'] = self.cutoff
data['n'] = self.n
data['N'] = self.N
data['group'] = self.group
data['power'] = self.EField.calpower()
data['sigma'] = self.EField.sigma
data['maxima'] = self.EField.maxima
data['factor'] = self.EField.factor
data['gamma'] = self.gamma
pickle.dump( data, open( self.file_out+".p", "wb" ) )
def initlibcumtrapz(self):
self.libcumtrapz.cumtrapz.restype = None
self.libcumtrapz.cumtrapz.argtypes = [np.ctypeslib.ndpointer(c_double),
c_double,
c_int,
c_int]
self.libcumtrapz.addorder.restype = None
self.libcumtrapz.addorder.argtypes = [np.ctypeslib.ndpointer(c_double),
np.ctypeslib.ndpointer(c_double),
np.ctypeslib.ndpointer(c_double),
np.ctypeslib.ndpointer(c_double),
c_int,
c_int,
c_double]
def ctype_cumtrapz(self):
#result = (c_double*(2*N**2))()
self.Dfunction = self.Dfunction.view('float64')
self.Dfunction = np.ascontiguousarray(self.Dfunction)
self.libcumtrapz.cumtrapz(self.Dfunction,self.dt,self.N,self.smpnum)
self.Dfunction = self.Dfunction.view('complex')
def ctype_addorder(self):
#result = (c_double*(2*N**2))()
self.Dfunction = self.Dfunction.view('float64')
self.Dfunction = np.ascontiguousarray(self.Dfunction)
self.T = self.T.view('float64')
self.T = np.ascontiguousarray(self.T)
self.D = self.D.view('float64')
self.D = np.ascontiguousarray(self.D)
self.envelope = np.ascontiguousarray(self.envelope,dtype = 'float64')
self.libcumtrapz.addorder(self.T,self.D,self.envelope,self.Dfunction,self.N,self.smpnum,self.dt)
self.Dfunction = self.Dfunction.view('complex')
self.T = self.T.view('complex')
self.D = self.D.view('complex')
if __name__ == '__main__':
ef = ElectricField()
markov = SuperMatrix(sys.argv[1],sys.argv[2],ef)
# markov.prepareT()
# markov.prepareD()
# markov.zeroOrder()
markov.ctype_test()
# for i in xrange(50):
# print "-------------------------"
# print "order ",markov.order+1
# t1 = time.time()
# norm = markov.addOrder2()
# print "difference norm %e" %norm
# t2 = time.time()
# print 'took %0.3f ms' % ((t2-t1)*1000.0)
# markov.prepareT()
# markov.prepareD()
# #markov.plotGraph(title=str(i)+"th order")
# if norm == 0:
# break
# markov.pp.close()
# markov.write()
# print "See the output PDF file to check if purturbation converge."