Skip to content

Commit

Permalink
setup enwik8 autoregressive training
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Sep 24, 2022
1 parent a7a4480 commit 430a183
Show file tree
Hide file tree
Showing 6 changed files with 173 additions and 2 deletions.
3 changes: 3 additions & 0 deletions data/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# Data source

The enwik8 data was downloaded from the Hutter prize page: http://prize.hutter1.net/
Binary file added data/enwik8.gz
Binary file not shown.
59 changes: 59 additions & 0 deletions mega_pytorch/autoregressive_wrapper.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import torch
from torch import nn
import torch.nn.functional as F

from einops import rearrange

# helper function

def exists(val):
return val is not None

def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner

# top k filtering

def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs

class AutoregressiveWrapper(nn.Module):
def __init__(self, net, pad_value = 0):
super().__init__()
self.pad_value = pad_value
self.net = net

@torch.no_grad()
@eval_decorator
def generate(self, start_tokens, seq_len, temperature = 1., filter_thres = 0.9, **kwargs):
b, t, device = *start_tokens.shape, start_tokens.device

out = start_tokens

for _ in range(seq_len):
logits = self.net(out, **kwargs)[:, -1, :]

filtered_logits = top_k(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)

sample = torch.multinomial(probs, 1)

out = torch.cat((out, sample), dim=-1)

out = out[:, t:]
return out

def forward(self, x, **kwargs):
x_inp, x_labels = x[:, :-1], x[:, 1:]
logits = self.net(x_inp, **kwargs)
return F.cross_entropy(rearrange(logits, 'b c n -> b n c'), x_labels)
2 changes: 1 addition & 1 deletion mega_pytorch/mega_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,7 +323,7 @@ def __init__(
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
MegaLayer(**kwargs),
MegaLayer(dim = dim, **kwargs),
nn.LayerNorm(dim),
FeedForward(dim = dim, ff_mult = ff_mult),
nn.LayerNorm(dim)
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'Mega-pytorch',
packages = find_packages(exclude=[]),
version = '0.0.6',
version = '0.0.7',
license='MIT',
description = 'Mega - Pytorch',
author = 'Phil Wang',
Expand Down
109 changes: 109 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
from mega_pytorch.mega_pytorch import Mega
from mega_pytorch.autoregressive_wrapper import AutoregressiveWrapper

import argparse
import random
import tqdm
import gzip
import numpy as np

import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset

# constants

NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 512

# helpers

def cycle(loader):
while True:
for data in loader:
yield data

def decode_token(token):
return str(chr(max(32, token)))

def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))

# instantiate GPT-like decoder model

model = Mega(
num_tokens = 256,
dim = 512,
depth = 8
)

model = AutoregressiveWrapper(model)

model.cuda()

# prepare enwik8 data

with gzip.open('./data/enwik8.gz') as file:
x = np.array(np.frombuffer(file.read(int(95e6)), dtype = np.uint8))
train_x, valid_x = np.split(x, [int(90e6)])
data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x)

class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len

def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()

def __len__(self):
return self.data.size(0) // self.seq_len

train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))

# optimizer

optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

# training

for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()

for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()

print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()

if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f'validation loss: {loss.item()}')

if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f"\n\n {prime} \n\n {'-' * 80} \n")

sample = model.generate(inp[None, ...], GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
print(output_str + "\n\n")

0 comments on commit 430a183

Please sign in to comment.