-
Notifications
You must be signed in to change notification settings - Fork 3
/
nn.py
242 lines (213 loc) · 6.45 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import tensorflow as tf
def lrelu(inputs, leak=0.1):
with tf.compat.v1.variable_scope('lrelu') as scope:
return tf.maximum(inputs, leak * inputs, name=scope)
def fc(
name,
inputs,
n_hiddens,
bias=None,
):
# Weight initializer
weight_initializer = tf.compat.v1.variance_scaling_initializer(
scale=1.0,
mode="fan_in",
distribution="normal",
)
# # MSRA initialization
# weight_initializer = tf.contrib.layers.variance_scaling_initializer(
# factor=2.0,
# mode='FAN_IN',
# uniform=False
# )
# Determine whether to use bias
use_bias = False
bias_initializer = tf.compat.v1.zeros_initializer()
if bias is not None:
use_bias = True
bias_initializer = tf.compat.v1.constant_initializer(bias)
# Dense
with tf.compat.v1.variable_scope(name) as scope:
outputs = tf.compat.v1.layers.dense(
inputs=inputs,
units=n_hiddens,
use_bias=use_bias,
kernel_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
return outputs
def conv1d(
name,
inputs,
n_filters,
filter_size,
stride_size,
bias=None,
padding="SAME",
):
# Weight initializer
weight_initializer = tf.compat.v1.variance_scaling_initializer(
scale=1.0,
mode="fan_in",
distribution="normal",
)
# # MSRA initialization
# weight_initializer = tf.contrib.layers.variance_scaling_initializer(
# factor=2.0,
# mode='FAN_IN',
# uniform=False
# )
# Determine whether to use bias
use_bias = False
bias_initializer = tf.compat.v1.zeros_initializer()
if bias is not None:
use_bias = True
bias_initializer = tf.compat.v1.constant_initializer(bias)
# Convolution
with tf.compat.v1.variable_scope(name) as scope:
outputs = tf.compat.v1.layers.conv2d(
inputs=inputs,
filters=n_filters,
kernel_size=(filter_size, 1),
strides=(stride_size, 1),
padding=padding,
use_bias=use_bias,
kernel_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
return outputs
def max_pool1d(
name,
inputs,
pool_size,
stride_size,
padding="SAME",
):
# Max pooling
with tf.compat.v1.variable_scope(name) as scope:
outputs = tf.compat.v1.layers.max_pooling2d(
inputs,
pool_size=(pool_size, 1),
strides=(stride_size, 1),
padding=padding
)
return outputs
def batch_norm(
name,
inputs,
is_training,
momentum=0.99,
epsilon=0.001
):
# Batch normalization
with tf.compat.v1.variable_scope(name) as scope:
outputs = tf.compat.v1.layers.batch_normalization(
inputs=inputs,
momentum=momentum,
epsilon=epsilon,
center=True,
scale=True,
beta_initializer=tf.compat.v1.zeros_initializer(),
gamma_initializer=tf.compat.v1.ones_initializer(),
moving_mean_initializer=tf.compat.v1.zeros_initializer(),
moving_variance_initializer=tf.compat.v1.ones_initializer(),
)
return outputs
def adam_optimizer(
loss,
training_variables,
global_step,
learning_rate=1e-4,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
):
with tf.compat.v1.variable_scope("adam_optimizer") as scope:
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1,
beta2=beta2,
epsilon=epsilon)
grads_and_vars_op = optimizer.compute_gradients(
loss=loss,
var_list=training_variables
)
apply_gradient_op = optimizer.apply_gradients(
grads_and_vars=grads_and_vars_op,
global_step=global_step
)
return apply_gradient_op, grads_and_vars_op
def adam_optimizer_clip(
loss,
training_variables,
global_step,
learning_rate=1e-4,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
clip_value=1.0,
):
with tf.compat.v1.variable_scope("adam_optimizer") as scope:
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1,
beta2=beta2,
epsilon=epsilon)
grads_and_vars_op = optimizer.compute_gradients(
loss=loss,
var_list=training_variables
)
grads_op, vars_op = zip(*grads_and_vars_op)
grads_op, _ = tf.clip_by_global_norm(grads_op, clip_value)
apply_gradient_op = optimizer.apply_gradients(
grads_and_vars=zip(grads_op, vars_op),
global_step=global_step
)
return apply_gradient_op, grads_and_vars_op
def adam_optimizer_clip_lrs(
loss,
list_train_vars,
list_lrs,
global_step,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
clip_value=5.0,
):
assert len(list_lrs) == len(list_train_vars)
train_vars = []
for v in list_train_vars:
if len(train_vars) == 0:
train_vars = list(v)
else:
train_vars.extend(v)
grads, _ = tf.clip_by_global_norm(tf.gradients(ys=loss, xs=train_vars),
clip_value)
offset = 0
apply_gradient_ops = []
grads_and_vars = []
for i, v in enumerate(list_train_vars):
g = grads[offset:offset+len(v)]
opt = tf.compat.v1.train.AdamOptimizer(
learning_rate=list_lrs[i],
beta1=beta1,
beta2=beta2,
epsilon=epsilon,
name="Adam"
)
if i == 0:
# Only increase global step once
apply_gradient_op = opt.apply_gradients(
grads_and_vars=zip(g, v),
global_step=global_step
)
else:
apply_gradient_op = opt.apply_gradients(
grads_and_vars=zip(g, v)
)
apply_gradient_ops.append(apply_gradient_op)
if len(grads_and_vars) == 0:
grads_and_vars = list(zip(g, v))
else:
grads_and_vars.extend(list(zip(g, v)))
offset += len(v)
apply_gradient_ops = tf.group(*apply_gradient_ops)
return apply_gradient_ops, grads_and_vars