本页汇集了机器学习相关的理论和实践学习内容。
当前流行的机器学习框架,Scikit-learn, tensorflow, xgboost, keras, NLT, gensim, numpy, 基本上都能使用Python Anaconda安装。
TensorFlow https://lucky521.github.io/blog/machinelearning/2017/10/26/tensorflow.html
XGBoost https://lucky521.github.io/blog/machinelearning/2018/03/25/boosting.html
Scikit-Learn https://lucky521.github.io/blog/machinelearning/2016/12/28/scikit-learn.html
特征工程 https://lucky521.github.io/blog/machinelearning/2018/04/18/feature-engineering.html
模型评价 https://lucky521.github.io/blog/machinelearning/2017/01/01/metrics-to-evaluate-model.html
提升方法 https://lucky521.github.io/blog/machinelearning/2018/03/25/boosting.html
最优化方法 https://lucky521.github.io/blog/machinelearning/2018/07/31/optimization-method.html
深度学习 https://lucky521.github.io/blog/machinelearning/2017/06/14/deep-learning.html
CNN网络 https://lucky521.github.io/blog/machinelearning/2017/12/21/cnn.html
图像分类 https://lucky521.github.io/blog/machinelearning/2017/03/27/image-recognition.html
深度学习实践之OpenCV https://lucky521.github.io/blog/framework/2017/12/01/opencv.html
自然语言处理 https://lucky521.github.io/blog/machinelearning/2018/05/15/nlp-using-machine-learning.html
搜索排序 https://lucky521.github.io/blog/tech/2018/02/23/search-tech.html
个性化搜索+个性化推荐 https://lucky521.github.io/blog/tech/2018/04/05/personalization-algorithm.html
当前项目 https://github.com/lucky521/Hello-Machine-Learning
深度学习 https://github.com/lucky521/deep-learning
视觉图像 https://github.com/lucky521/your-face
李沐《动手学深度学习》 https://zh.gluon.ai/
Andrew Ng 《Machine Learning Yearning》
Rules of Machine Learning: Best Practices for ML Engineering
University of Montreal LISA lab 的深度学习教材
Hands-On Machine Learning with Scikit-Learn and TensorFlow
李航《统计学习方法》
周志华《机器学习》
Ian Goodfellow 《Deep Learning》
Machine Learning:A Probabilistic Perspective
Pattern Recognition and Machine Learning
The Elements of Statistical Learning
《神经网络与深度学习》(https://nndl.github.io/nndl-book.pdf)
机器学习速成课程
https://developers.google.com/machine-learning/crash-course/?hl=zh-cn
机器学习基础
https://bloomberg.github.io/foml/#home
林轩田 《机器学习基石》和《机器学习技法》
机器学习技术课程笔记 - 台湾大学林轩田
斯坦福 CS229 Machine Learning
有三个两个版本 https://www.coursera.org/learn/machine-learning
MACHINE LEARNING YEARNING
https://github.com/AcceptedDoge/machine-learning-yearning-cn
李宏毅机器学习课程
https://datawhalechina.github.io/leeml-notes/#/
斯坦福 CS224N 自然语言处理nlp-with-deep-learning
https://web.stanford.edu/class/cs224n/
斯坦福 CS231n 深度学习与计算机视觉
http://cs231n.github.io/
2016版 http://study.163.com/course/courseMain.htm?courseId=1003223001
2017版 http://www.mooc.ai/course/268
斯坦福 MS&E239 广告课程
https://web.stanford.edu/class/msande239/
斯坦福 CS230 Deep Learning
http://cs230.stanford.edu/
deeplearning.ai
https://mooc.study.163.com/course/deeplearning_ai-2001281002#/info
https://github.com/kailashahirwar/cheatsheets-ai
http://www.kaggle.com 数据挖掘比赛。