-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGeometric_skewing.py
39 lines (28 loc) · 1013 Bytes
/
Geometric_skewing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import cv2
import numpy
import matplotlib.pyplot as plt
# skew, affine transform
# http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html
img = cv2.imread('lena.png')
rows,cols,ch = img.shape
'''
pts1 = numpy.float32([[rows/2,0],[0,cols/2],[rows/2,cols/2]])
pts2 = numpy.float32([
[rows/2-rows/2/1.414, rows/2-rows/2/1.414],
[rows/2-rows/2/1.414,rows/2+rows/2/1.141],
[rows/2,rows/2]
])
'''
#pts1 = numpy.float32([[rows/2,0],[0,cols/2],[rows/2,cols/2]])
#pts2 = numpy.float32([[0,0],[0,rows/2*1.414],[rows/4*1.414,rows/4*1.414]])
#pts1 = numpy.float32([[50,50],[200,50],[50,200]])
#pts2 = numpy.float32([[10,100],[200,50],[100,250]])
pts1 = numpy.float32([[0,0],[0,100],[100,0]])
pts2 = numpy.float32([[0,0],[0,50],[50,0]])
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(img, M, (cols,rows))
plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dst), plt.title('Output')
plt.show()
#cv2.imshow('', dst)
#cv2.waitKey(0)