Skip to content

Latest commit

 

History

History
149 lines (101 loc) · 4.26 KB

README.md

File metadata and controls

149 lines (101 loc) · 4.26 KB

PyRitz: Transition paths and quasipotentials in Python Binder

PyRitz logo

A python package for direct variational minimisation, specifically suited for finding Freidlin-Wentzell instantons.

Installation

Running the PyRitz examples

It is possible to try out PyRitz without installing it to your system (this was only tested on Linux). The script setup_nlopt_locally.sh installs NLopt into the repository, so that the examples can be run locally.

git clone https://github.com/lukastk/PyRitz.git
cd PyRitz
sh setup_nlopt_locally.sh
cd examples
jupyter notebook

Pip

pip install -e git+https://github.com/lukastk/PyRitz.git#egg=pyritz

Clone/fork repo

git clone https://github.com/lukastk/PyRitz.git
cd PyRitz
python setup.py install

Dependencies

The most straight-forward way to install PyRitz and its dependencies is through Anaconda.

conda install numpy
conda install scipy
conda install -c conda-forge nlopt

For plotting:

conda install matplotlib

To run the examples you also need:

Usage

For a detailed tutorial see the Jupyter Notebook PyRitz/examples/PyRitz Tutorial, or the PDF version of the tutorial PyRitz/docs/PyRitz Tutorial.

Below is a simple demonstration of PyRitz:

import pyritz, nlopt

# Define the lagrangian of the surface of revolution
def lagrangian(ls, dxls, dvls, path, xs, args):
    ys, dys = path
    ls[:] = 2*np.pi*np.abs(ys)*np.sqrt(1 + dys*dys)

# Define the end-point conditions
y1 = np.cosh(0)
y2 = np.cosh(2)

# Set the interpolation and the quadrature order
n = 8
nq = n*10

# Define the initial path for the minimiser
alpha0 = pyritz.interpolation.utils.linear_path(y1, y2, n)

# Setup the path-interpolation and action quadrature of the system using PyRitz
action = pyritz.interpolation.Action(lagrangian, n, nq, x1, x2)

# Minimize the action using NLopt
opt = nlopt.opt(nlopt.LN_NEWUOA, np.size(alpha0))
opt.set_lower_bounds(np.full(np.size(alpha0), 0))
opt.set_min_objective(action.compute)
opt.set_xtol_rel(1e-10)
alpha = opt.optimize(alpha0)

print("S[alpha0] = %s" % path.action(alpha0))
print("S[alpha]  = %s" % path.action(alpha))

Results:

S[alpha0] = 51.01386317532773
S[alpha]  = 49.135826695371414

Plot the result:

def analytic_sol(xs):
    return np.cosh(1 + xs)

xs = np.linspace(-1, 1, 1000)

paths = [
    (action.get_alpha_with_endpoints(alpha0), "Initial"),
    (action.get_alpha_with_endpoints(alpha), "Final")
]

for _alpha, _label in paths:
    ys = pyritz.interpolation.utils.interpolate(_alpha, n, ts)
    plt.plot(ts, ys[0,:], label=_label)

plt.plot(xs, analytic_sol(xs), "--", dashes=(8, 8), label="Analytic")
plt.legend()
mpl.pyplot.gcf().set_size_inches(7, 7)

Surface of revolution

For more examples see the folder PyRitz/examples/.

Publications

Ritz method for transition paths and quasipotentials of rare diffusive events. L. T. Kikuchi, R. Singh, M. E. Cates, R. Adhikari (To be published)

Citing PyRitz

If you use PyRitz for academic work, we would request you to cite our papers.

License

PyRitz is published under the MIT License.

This repository includes code from NLopt, developed by Steven G. Johnson, which is under the GNU Lesser General Public License.

Authors

Lukas Kikuchi, Rajesh Singh, Mike Cates, Ronojoy Adhikari