From 3e3ecbc7c7a546f1a8214fe4fad80ce5ab394779 Mon Sep 17 00:00:00 2001 From: Jacob G-W Date: Sun, 11 Feb 2024 17:16:52 -0500 Subject: [PATCH] add example and update faq to include mixed precision --- docs/user/faq.rst | 2 + examples/pinn_forward/Burgers_mixed.py | 53 ++++++++++++++++++++++++++ 2 files changed, 55 insertions(+) create mode 100644 examples/pinn_forward/Burgers_mixed.py diff --git a/docs/user/faq.rst b/docs/user/faq.rst index aaaa1ac0e..e0aadb5b9 100644 --- a/docs/user/faq.rst +++ b/docs/user/faq.rst @@ -10,6 +10,8 @@ General usage | **A**: `#5`_ - | **Q**: By default, DeepXDE uses ``float32``. How can I use ``float64``? | **A**: `#28`_ + | **Q**: How can I use mixed precision training? + | **A**: Use ``dde.config.set_default_float("mixed")`` with the ``tensorflow`` or ``pytorch`` backends. See `https://arxiv.org/abs/2401.16645` for more information. - | **Q**: I want to set the global random seeds. | **A**: `#353`_ - | **Q**: GPU. diff --git a/examples/pinn_forward/Burgers_mixed.py b/examples/pinn_forward/Burgers_mixed.py new file mode 100644 index 000000000..064db0d7c --- /dev/null +++ b/examples/pinn_forward/Burgers_mixed.py @@ -0,0 +1,53 @@ +"""Backend supported: tensorflow, pytorch +The exact same as Burgers.py, but using mixed precision instead of float32. +This preserves accuracy while speeding up training (especially with larger training runs). +""" + +import deepxde as dde +import numpy as np + +dde.config.set_default_float("mixed") + +def gen_testdata(): + data = np.load("../dataset/Burgers.npz") + t, x, exact = data["t"], data["x"], data["usol"].T + xx, tt = np.meshgrid(x, t) + X = np.vstack((np.ravel(xx), np.ravel(tt))).T + y = exact.flatten()[:, None] + return X, y + + +def pde(x, y): + dy_x = dde.grad.jacobian(y, x, i=0, j=0) + dy_t = dde.grad.jacobian(y, x, i=0, j=1) + dy_xx = dde.grad.hessian(y, x, i=0, j=0) + return dy_t + y * dy_x - 0.01 / np.pi * dy_xx + + +geom = dde.geometry.Interval(-1, 1) +timedomain = dde.geometry.TimeDomain(0, 0.99) +geomtime = dde.geometry.GeometryXTime(geom, timedomain) + +bc = dde.icbc.DirichletBC(geomtime, lambda x: 0, lambda _, on_boundary: on_boundary) +ic = dde.icbc.IC( + geomtime, lambda x: -np.sin(np.pi * x[:, 0:1]), lambda _, on_initial: on_initial +) + +data = dde.data.TimePDE( + geomtime, pde, [bc, ic], num_domain=2540, num_boundary=80, num_initial=160 +) +net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal") +model = dde.Model(data, net) + +model.compile("adam", lr=1e-3) +model.train(iterations=15000) +model.compile("L-BFGS") +losshistory, train_state = model.train() +dde.saveplot(losshistory, train_state, issave=True, isplot=True) + +X, y_true = gen_testdata() +y_pred = model.predict(X) +f = model.predict(X, operator=pde) +print("Mean residual:", np.mean(np.absolute(f))) +print("L2 relative error:", dde.metrics.l2_relative_error(y_true, y_pred)) +np.savetxt("test.dat", np.hstack((X, y_true, y_pred)))