-
Notifications
You must be signed in to change notification settings - Fork 767
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3aca6f7
commit 7c8cc9a
Showing
2 changed files
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import paddle | ||
|
||
from .nn import NN | ||
from .. import activations | ||
from .. import initializers | ||
from .. import regularizers | ||
from ... import config | ||
|
||
|
||
class MfNN(NN): | ||
"""Multifidelity neural networks.""" | ||
|
||
def __init__( | ||
self, | ||
layer_sizes_low_fidelity, | ||
layer_sizes_high_fidelity, | ||
activation, | ||
kernel_initializer, | ||
regularization=None, | ||
residue=False, | ||
trainable_low_fidelity=True, | ||
trainable_high_fidelity=True, | ||
): | ||
super().__init__() | ||
self.layer_size_lo = layer_sizes_low_fidelity | ||
self.layer_size_hi = layer_sizes_high_fidelity | ||
|
||
self.activation = activations.get(activation) | ||
self.activation_tanh = activations.get("tanh") | ||
self.initializer = initializers.get(kernel_initializer) | ||
self.initializer_zero = initializers.get("zeros") | ||
self.trainable_lo = trainable_low_fidelity | ||
self.trainable_hi = trainable_high_fidelity | ||
self.residue = residue | ||
self.regularizer = regularizers.get(regularization) | ||
|
||
# low fidelity | ||
self.linears_lo = self.init_dense(self.layer_size_lo, self.trainable_lo) | ||
|
||
# high fidelity | ||
# linear part | ||
self.linears_hi_l = paddle.nn.Linear( | ||
in_features=self.layer_size_lo[0] + self.layer_size_lo[-1], | ||
out_features=self.layer_size_hi[-1], | ||
weight_attr=paddle.ParamAttr(initializer=self.initializer), | ||
bias_attr=paddle.ParamAttr(initializer=self.initializer_zero), | ||
) | ||
if not self.trainable_hi: | ||
for param in self.linears_hi_l.parameters(): | ||
param.stop_gradient = False | ||
# nonlinear part | ||
self.layer_size_hi = [ | ||
self.layer_size_lo[0] + self.layer_size_lo[-1] | ||
] + self.layer_size_hi | ||
self.linears_hi = self.init_dense(self.layer_size_hi, self.trainable_hi) | ||
# linear + nonlinear | ||
if not self.residue: | ||
alpha = self.init_alpha(0.0, self.trainable_hi) | ||
self.add_parameter("alpha", alpha) | ||
else: | ||
alpha1 = self.init_alpha(0.0, self.trainable_hi) | ||
alpha2 = self.init_alpha(0.0, self.trainable_hi) | ||
self.add_parameter("alpha1", alpha1) | ||
self.add_parameter("alpha2", alpha2) | ||
|
||
def init_dense(self, layer_size, trainable): | ||
linears = paddle.nn.LayerList() | ||
for i in range(len(layer_size) - 1): | ||
linear = paddle.nn.Linear( | ||
in_features=layer_size[i], | ||
out_features=layer_size[i + 1], | ||
weight_attr=paddle.ParamAttr(initializer=self.initializer), | ||
bias_attr=paddle.ParamAttr(initializer=self.initializer_zero), | ||
) | ||
if not trainable: | ||
for param in linear.parameters(): | ||
param.stop_gradient = False | ||
linears.append(linear) | ||
return linears | ||
|
||
def init_alpha(self, value, trainable): | ||
alpha = paddle.create_parameter( | ||
shape=[1], | ||
dtype=config.real(paddle), | ||
default_initializer=paddle.nn.initializer.Constant(value), | ||
) | ||
alpha.stop_gradient = not trainable | ||
return alpha | ||
|
||
def forward(self, inputs): | ||
x = inputs.astype(config.real(paddle)) | ||
# low fidelity | ||
y = x | ||
for i, linear in enumerate(self.linears_lo): | ||
y = linear(y) | ||
if i != len(self.linears_lo) - 1: | ||
y = self.activation(y) | ||
y_lo = y | ||
|
||
# high fidelity | ||
x_hi = paddle.concat([x, y_lo], axis=1) | ||
# linear | ||
y_hi_l = self.linears_hi_l(x_hi) | ||
# nonlinear | ||
y = x_hi | ||
for i, linear in enumerate(self.linears_hi): | ||
y = linear(y) | ||
if i != len(self.linears_hi) - 1: | ||
y = self.activation(y) | ||
y_hi_nl = y | ||
# linear + nonlinear | ||
if not self.residue: | ||
alpha = self.activation_tanh(self.alpha) | ||
y_hi = y_hi_l + alpha * y_hi_nl | ||
else: | ||
alpha1 = self.activation_tanh(self.alpha1) | ||
alpha2 = self.activation_tanh(self.alpha2) | ||
y_hi = y_lo + 0.1 * (alpha1 * y_hi_l + alpha2 * y_hi_nl) | ||
|
||
return y_lo, y_hi |